Skip to main content

Advertisement

Log in

In the shadow of resveratrol: biological activities of epsilon-viniferin

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 11 June 2022

This article has been updated

Abstract

Stilbenes are secondary metabolites belonging to the polyphenol family. Those compounds are derived from the glycosylation, prenylation, methoxylation, hydroxylation, or also oligomerization of the well-known trans-resveratrol. One of them, trans-epsilon-viniferin (ε-viniferin), is a trans-resveratrol dimer that arouses the interest of researchers in the field of human health. The biosynthesis of this molecule in various plant species, particularly high in the Vitaceae family, explains its presence in some red wines, which represent the main source of ε-viniferin in the human diet. Although bioavailability studies have shown poor absorption and high metabolism of this stilbene, multiple studies demonstrated its biological properties. The ε-viniferin exhibits strong activities against inflammatory and oxidative stress. Moreover, various studies have reported great activity of this compound not only in a wide range of disorders and diseases, such as cancer, obesity, and its associated disorders, but also in vascular diseases and neurodegeneration, for which the pathophysiology is closely related to the state of oxidation and inflammation. This review provides a state of art of the main activities of ε-viniferin demonstrated in vitro and in vivo, highlighting that this resveratrol dimer could be a promising candidate for future functional foods or supplement foods used for the management of many chronic diseases of concern in terms of public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Aja I, Begoña Ruiz-Larrea M, Courtois A et al (2020) Screening of natural stilbene oligomers from Vitis vinifera for anticancer activity on human hepatocellular carcinoma cells. Antioxidants 9. https://doi.org/10.3390/antiox9060469

  2. Amico V, Barresi V, Chillemi R et al (2009) Bioassay-guided isolation of antiproliferative compounds from grape (Vitis vinifera) stems (Natural Product Communications (2009) 4, 1 (27-34)). Nat Prod Commun 4:305. https://doi.org/10.1007/s12272-009-1132-2

  3. Amin HIM, Hussain FHS, Najmaldin SK et al (2021) Phytochemistry and biological activities of Iris species growing in Iraqi Kurdistan and phenolic constituents of the traditional plant Iris postii. Molecules (Basel, Switzerland) 26. https://doi.org/10.3390/molecules26020264

  4. Arraki K, Totoson P, Decendit A et al (2017) Cyperaceae species are potential sources of natural mammalian arginase inhibitors with positive effects on vascular function. J Nat Prod 80:2432–2438. https://doi.org/10.1021/acs.jnatprod.7b00197

    Article  CAS  PubMed  Google Scholar 

  5. Azmin NFN, Ahmat N, Syah YM et al (2014) A new stilbenoid compound from the lianas of gnetum microcarpum. Nat Prod Commun 9:1743–1744. https://doi.org/10.1177/1934578x1400901221

    Article  Google Scholar 

  6. Baechler SA, Schroeter A, Dicker M et al (2014) Topoisomerase II-targeting properties of a grapevine-shoot extract and resveratrol oligomers. J Agric Food Chem 62:780–788. https://doi.org/10.1021/jf4046182

    Article  CAS  PubMed  Google Scholar 

  7. Barjot C, Tournaire M, Castagnino C et al (2007) Evaluation of antitumor effects of two vine stalk oligomers of resveratrol on a panel of lymphoid and myeloid cell lines: comparison with resveratrol. Life Sci 81:1565–1574. https://doi.org/10.1016/j.lfs.2007.08.047

    Article  CAS  PubMed  Google Scholar 

  8. Basri DF, Luoi CK, Azmi AM, Latip J (2012) Evaluation of the combined effects of stilbenoid from Shorea gibbosa and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Pharmaceuticals 5:1032–1043. https://doi.org/10.3390/ph5091032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaumont P, Faure C, Courtois A, Jourdes M, Marchal A, Teissedre P-L, Richard T, Atgié C, Krisa S, Aguirre L, Klaus S (2021) Trans-ε-viniferin encapsulation in multi-lamellar liposomes: consequences on pharmacokinetic parameters, biodistribution and glucuronide formation in rats. https://doi.org/10.3390/nu13124212

    Book  Google Scholar 

  10. Benbouguerra N, Hornedo-Ortega R, Garcia F et al (2021) Stilbenes in grape berries and wine and their potential role as anti-obesity agents: a review. Trends Food Sci Technol 112:362–381. https://doi.org/10.1016/j.tifs.2021.03.060

    Article  CAS  Google Scholar 

  11. Biais B, Krisa S, Cluzet S et al (2017) Antioxidant and cytoprotective activities of grapevine stilbenes. J Agric Food Chem 65:4952–4960. https://doi.org/10.1021/acs.jafc.7b01254

    Article  CAS  PubMed  Google Scholar 

  12. Billard C, Izard JC, Roman V et al (2002) Comparative antiproliferative and apoptotic effects of resveratrol, ε-viniferin and vine-shots derived polyphenols (Vineatrols) on chronic B lymphocytic leukemia cells and normal human lymphocytes. Leuk Lymphoma 43:1991–2002. https://doi.org/10.1080/1042819021000015952

    Article  CAS  PubMed  Google Scholar 

  13. Caillaud M, Guillard J, Richard D et al (2019) Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model. PLoS One 14. https://doi.org/10.1371/journal.pone.0212663

  14. Calvo-Castro LA, Schiborr C, David F, et al (2018) The oral bioavailability of trans-resveratrol from a grapevine-shoot extract in healthy humans is significantly increased by micellar solubilization. Molecular Nutrition and Food Research 62:. https://doi.org/10.1002/mnfr.201701057

  15. Chen L, Deng H, Cui H et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218. https://doi.org/10.18632/oncotarget.23208

  16. Cho HS, Lee JH, Ryu SY et al (2013) Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 61:7120–7126. https://doi.org/10.1021/jf4009313

    Article  CAS  PubMed  Google Scholar 

  17. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155. https://doi.org/10.1016/j.plantsci.2009.05.012

  18. Colin D, Lancon A, Delmas D et al (2008) Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical cell disturbance revealed by fluorescence analyses. Biochimie 90:1674–1684. https://doi.org/10.1016/j.biochi.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Cory H, Passarelli S, Szeto J et al (2018) The role of polyphenols in human health and food systems: a mini-review. Frontiers in Nutrition 5. https://doi.org/10.3389/fnut.2018.0008

  20. Courtois A, Atgié C, Marchal A et al (2018) Tissular distribution and metabolism of trans-ε-viniferin after intraperitoneal injection in rat. Nutrients 10:1–11. https://doi.org/10.3390/nu10111660

    Article  CAS  Google Scholar 

  21. Courtois A, Jourdes M, Dupin A et al (2017) In vitro glucuronidation and sulfation of ϵ-viniferin, a resveratrol dimer, in humans and rats. Molecules 22. https://doi.org/10.3390/molecules22050733

  22. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043. https://doi.org/10.1039/b802662a

    Article  CAS  PubMed  Google Scholar 

  23. el Khawand T, Courtois A, Valls J et al (2018) A review of dietary stilbenes: sources and bioavailability. Phytochem Rev 17:1007–1029. 10.1007/s11101-018-9578-9

  24. Eseberri I, Lasa A, Churruca I, Portillo MP (2013) Resveratrol metabolites modify adipokine expression and secretion in 3T3-L1 pre-adipocytes and mature adipocytes. PLoS One 8:e63918. https://doi.org/10.1371/journal.pone.0063918

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fernandez-Cruz E, Cerezo AB, Cantos-Villar E et al (2019) Inhibition of VEGFR-2 phosphorylation and effects on downstream signaling pathways in cultivated human endothelial cells by stilbenes from Vitis spp. J Agric Food Chem 67:3909–3918. https://doi.org/10.1021/acs.jafc.9b00282

    Article  CAS  PubMed  Google Scholar 

  26. Fu J, Jin J, Cichewicz RH et al (2012) Trans-(-)-ε-viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated Protein Kinase (AMPK), and protects cells in models of huntington disease. J Biol Chem 287:24460–24472. https://doi.org/10.1074/jbc.M112.382226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gabaston J, Cantos-Villar E, Biais B et al (2017) Stilbenes from Vitis vinifera L. waste: a sustainable tool for controlling Plasmopara viticola. J Agric Food Chem 65:2711–2718. https://doi.org/10.1021/acs.jafc.7b00241

    Article  CAS  PubMed  Google Scholar 

  28. Gabaston J, Leborgne C, Waffo-Teguo P et al (2019) Wood and roots of major grapevine cultivars and rootstocks: a comparative analysis of stilbenes by UHPLC-DAD-MS/MS and NMR. Phytochem Anal 30:320–331. https://doi.org/10.1002/pca.2815

    Article  CAS  PubMed  Google Scholar 

  29. Gabaston J, Valls Fonayet J, Franc C et al (2020) Characterization of stilbene composition in grape berries from wild Vitis species in year-to-year harvest. J Agric Food Chem 68:13408–13417. https://doi.org/10.1021/acs.jafc.0c04907

    Article  CAS  PubMed  Google Scholar 

  30. Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55:250–260. https://doi.org/10.1016/s0008-6363(02)00327-9

  31. Guerrero RF, Valls-Fonayet J, Richard T, Cantos-Villar E (2020) A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography – mass spectrometry. Food Control 108. https://doi.org/10.1016/j.foodcont.2019.106821

  32. Guschlbauer M, Klinger S, Burmester M et al (2013) Trans-resveratrol and ε-viniferin decrease glucose absorption in porcine jejunum and ileum in vitro. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology 165:313–318. https://doi.org/10.1016/j.cbpa.2013.03.040

    Article  CAS  PubMed  Google Scholar 

  33. Ha DT, Long PT, Hien TT et al (2018) Anti-inflammatory effect of oligostilbenoids from Vitis heyneana in LPS-stimulated RAW 264.7 macrophages via suppressing the NF-ΚB activation. Chemistry Central Journal 12. https://doi.org/10.1186/s13065-018-0386-5

  34. Hamid K, Ng I, Tallapragada VJ, et al (2015) The differential effects of resveratrol and trans-ε-viniferin on the gaba-induced current in GABAA receptor subtypes expressed in Xenopus laevis oocytes. Journal of Pharmacy and Pharmaceutical Sciences 18:328–338. https://doi.org/10.18433/j3qw3k

  35. Huang CC, Tung YT, Cheng KC, Wu JH (2011) Phytocompounds from Vitis kelungensis stem prevent carbon tetrachloride-induced acute liver injury in mice. Food Chem 125:726–731. https://doi.org/10.1016/j.foodchem.2010.09.085

    Article  CAS  Google Scholar 

  36. Hung MW, Wu CW, Kokubu D et al (2019) ϵ-Viniferin is more effective than resveratrol in promoting favorable adipocyte differentiation with enhanced adiponectin expression and decreased lipid accumulation. Food Sci Technol Res 25:817–826. https://doi.org/10.3136/fstr.25.817

    Article  CAS  Google Scholar 

  37. Hussain T, Tan B, Yin Y et al (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016. https://doi.org/10.1155/2016/7432797

  38. Iliya I, Ali Z, Tanaka T et al (2002) Stilbenoids from the stem of Gnetum latifolium (Gnetaceae). Phytochemistry 61:959–961. https://doi.org/10.1016/S0031-9422(02)00289-3

    Article  CAS  PubMed  Google Scholar 

  39. Ito T, Akao Y, Yi H et al (2003) Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C. Carcinogenesis 24:1489–1497. https://doi.org/10.1093/carcin/bgg105

    Article  CAS  PubMed  Google Scholar 

  40. Jeong HY, Kim JY, Lee HK et al (2010) Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25-35)-induced neurotoxicity. Arch Pharm Res 33:1655–1664. https://doi.org/10.1007/s12272-010-1015-6

    Article  CAS  PubMed  Google Scholar 

  41. Kamarozaman AS, Latip J, Syah YM, et al (2013) Oligostilbenoids from Vatica pauciflora and the oxidative effect on chang cells. In: Journal of Physics: Conference Series. Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/423/1/012045

  42. Kang JH, Park YH, Choi SW et al (2003) Resveratrol derivatives potently induce apoptosis in human promyelocytic leukemia cells. Exp Mol Med 35:467–474. https://doi.org/10.1038/emm.2003.61

    Article  CAS  PubMed  Google Scholar 

  43. Karaki SI, Ishikawa J, Tomizawa Y, Kuwahara A (2016) Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa. Physiological Reports 4:1–17. https://doi.org/10.14814/phy2.12790

  44. Kim HJ, Chang EJ, Bae SJ et al (2002) Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch Pharm Res 25:293–299. https://doi.org/10.1007/bf02976629

    Article  CAS  PubMed  Google Scholar 

  45. Kim HJ, Chang EJ, Cho SH et al (2002) Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeoni lactiflora. Biosci Biotechnol Biochem 66:1990–1993. https://doi.org/10.1271/bbb.66.1990

    Article  CAS  PubMed  Google Scholar 

  46. Kim J, Min JS, Kim D et al (2017) A simple and sensitive liquid chromatography–tandem mass spectrometry method for trans-ε-viniferin quantification in mouse plasma and its application to a pharmacokinetic study in mice. J Pharm Biomed Anal 134:116–121. https://doi.org/10.1016/j.jpba.2016.11.044

    Article  CAS  PubMed  Google Scholar 

  47. Kim JA, Kim MR, Kim O et al (2012) Amurensin G inhibits angiogenesis and tumor growth of tamoxifen-resistant breast cancer via Pin1 inhibition. Food Chem Toxicol 50:3625–3634. https://doi.org/10.1016/j.fct.2012.07.027

    Article  CAS  PubMed  Google Scholar 

  48. Kim JY, Jeong HY, Lee HK et al (2012) Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons. Phytomedicine 19:150–159. https://doi.org/10.1016/j.phymed.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  49. Kong Q, Ren X, Hu R et al (2016) Isolation and purification of two antioxidant isomers of resveratrol dimer from the wine grape by counter-current chromatography. J Sep Sci 39:2374–2379. https://doi.org/10.1002/jssc.201600004

    Article  CAS  PubMed  Google Scholar 

  50. Koo M, Kim SH, Lee N et al (2008) 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitory effect of Vitis vinifera. Fitoterapia 79:204–206. https://doi.org/10.1016/j.fitote.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  51. Kurihara H, Kawabata J, Ichikawa S, Mizutani J (1990) (−)-ε-Viniferin and related oligostilbenes from carex pumita thunb. (gyperaceae). Agric Biol Chem 54:1097–1099. https://doi.org/10.1080/00021369.1990.10870044

    Article  CAS  Google Scholar 

  52. Kurundkar D, Kurundkar AR, Bone NB et al (2019) SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight 4. https://doi.org/10.1172/jci.insight.120722

  53. Lambert C, Lemaire J, Auger H et al (2019) Optimize, modulate, and scale-up resveratrol and resveratrol dimers bioproduction in Vitis labrusca l. Cell suspension from flasks to 20 l bioreactor. Plants 8. https://doi.org/10.3390/plants8120567

  54. Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151–152. https://doi.org/10.1007/BF02124034

    Article  CAS  PubMed  Google Scholar 

  55. Langcake P, Pryce RJ (1977) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16:1193–1196. https://doi.org/10.1016/S0031-9422(00)94358-9

    Article  CAS  Google Scholar 

  56. Lee JH, Kim YG, Ryu SY et al (2014) Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa. J Nat Prod 77:168–172. https://doi.org/10.1021/np400756g

    Article  CAS  PubMed  Google Scholar 

  57. Li XM, Lin M, Wang YH, Liu X (2004) Four new stilbenoids from the lianas of Gnetum montanum f. megalocarpum. Planta Med 70:160–165. https://doi.org/10.1055/s-2004-815494

    Article  CAS  PubMed  Google Scholar 

  58. Liu M, Dong T, Guan X et al (2018) Regioselective biomimetic oxidation of halogenated resveratrol for the synthesis of (±)-ε-viniferin and its analogues. Tetrahedron 74:4013–4019. https://doi.org/10.1016/j.tet.2018.06.005

    Article  CAS  Google Scholar 

  59. Liu R, Zhang Y, Yao X et al (2020) ε-Viniferin, a promising natural oligostilbene, ameliorates hyperglycemia and hyperlipidemia by activating AMPK: in vivo. Food Funct 11:10084–10093. https://doi.org/10.1039/d0fo01932a

    Article  CAS  PubMed  Google Scholar 

  60. Liu S, Li Y, Yi F et al (2020) Resveratrol oligomers from Paeonia suffruticosa protect mice against cognitive dysfunction by regulating cholinergic, antioxidant and anti-inflammatory pathways. J Ethnopharmacol 260. https://doi.org/10.1016/j.jep.2020.112983

  61. Loupit G, Prigent S, Franc C et al (2020) Polyphenol profiles of just pruned grapevine canes from wild Vitis accessions and Vitis vinifera cultivars. J Agric Food Chem 68:13397–13407. https://doi.org/10.1021/acs.jafc.9b08099

    Article  CAS  PubMed  Google Scholar 

  62. Lu YL, Lin SY, Fang SU et al (2017) Hot-water extracts from roots of Vitis thunbergii var. taiwaniana and identified σ-viniferin improve obesity in high-fat diet-induced mice. J Agric Food Chem 65:2521–2529. https://doi.org/10.1021/acs.jafc.7b00327

    Article  CAS  PubMed  Google Scholar 

  63. Mao P, Lei Y, Zhang T et al (2016) Pharmacokinetics, bioavailability, metabolism and excretion of δ-viniferin in rats. Acta Pharm Sin B 6:243–252. https://doi.org/10.1016/j.apsb.2016.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  64. Marel AK, Lizard G, Izard JC et al (2008) Inhibitory effects of trans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells. Mol Nutr Food Res 52:538–548. https://doi.org/10.1002/mnfr.200700185

    Article  CAS  PubMed  Google Scholar 

  65. Mattio LM, Marengo M, Parravicini C et al (2019) Inhibition of pancreatic α-amylase by resveratrol derivatives: biological activity and molecular modelling evidence for cooperativity between viniferin enantiomers. Molecules 24. https://doi.org/10.3390/molecules24183225

  66. Medrano-Padial C, Prieto AI, Puerto M, Pichardo S (2021) Toxicological evaluation of piceatannol, pterostilbene, and ε-viniferin for their potential use in the food industry: a review. Foods 10:592. https://doi.org/10.3390/foods10030592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Medrano-Padial C, Puerto M, Prieto AI et al (2021) In vivo genotoxicity evaluation of a stilbene extract prior to its use as a natural additive: a combination of the micronucleus test and the comet assay. Foods 10:439. https://doi.org/10.3390/foods10020439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Medrano-Padial C, Puerto M, Richard T, et al (2021) Protection and reversion role of a pure stilbene extract from grapevine shoot and its major compounds against an induced oxidative stress. Journal of Functional Foods 79:. https://doi.org/10.1016/j.jff.2021.104393

  69. Mi YY, Oh KS, Jung WL et al (2007) Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta. Phytother Res 21:186–189. https://doi.org/10.1002/ptr.2042

    Article  CAS  Google Scholar 

  70. Morel-Salmi C, Julia A, Vigor C, Vercauteren J (2014) A huge PVDF adsorption difference between resveratrol and ε-viniferin allows to quantitatively purify them and to assess their anti-tyrosinase property. Chromatographia 77:957–961. https://doi.org/10.1007/s10337-014-2707-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muhtadi HEH, Juliawaty LD et al (2006) Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii. Fitoterapia 77:550–555. https://doi.org/10.1016/j.fitote.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  72. Naia L, Carmo C, Campesan S et al (2021) Mitochondrial SIRT3 confers neuroprotection in Huntington’s disease by regulation of oxidative challenges and mitochondrial dynamics. Free Radic Biol Med 163:163–179. https://doi.org/10.1016/j.freeradbiomed.2020.11.031

    Article  CAS  PubMed  Google Scholar 

  73. Nassra M, Krisa S, Papastamoulis Y et al (2013) Inhibitory activity of plant stilbenoids against nitric oxide production by lipopolysaccharide-activated microglia. Planta Med 79:966–970. https://doi.org/10.1055/s-0032-1328651

    Article  CAS  PubMed  Google Scholar 

  74. Nazri NAAM, Ahmat N, Abdullah M et al (2012) Antioxidant, antimicrobial and cytotoxic activities of resveratrol oligomers of shorea macroptera dyer. Aust J Basic Appl Sci 6:431–436

    CAS  Google Scholar 

  75. Ngoc TM, Minh PTH, Hung TM et al (2008) Lipoxygenase inhibitory constituents from rhubarb. Arch Pharm Res 31:598–605. https://doi.org/10.1007/s12272-001-1199-0

    Article  CAS  PubMed  Google Scholar 

  76. Nivelle L, Aires V, Rioult D et al (2018) Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells. Food Chem Toxicol 116:323–334. https://doi.org/10.1016/j.fct.2018.04.043

    Article  CAS  PubMed  Google Scholar 

  77. Nivelle L, Hubert J, Courot E et al (2017) Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules 22. https://doi.org/10.3390/molecules22030474

  78. Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L, Medina-Bolivar F (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (vitis rotundifolia michx.). In: Journal of Agricultural and Food Chemistry. J Agric Food Chem, pp 11744–11758. https://doi.org/10.14814/phy2.12790

  79. Ohara K, Kusano K, Kitao S et al (2015) ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochem Biophys Res Commun 468:877–882. https://doi.org/10.1016/j.bbrc.2015.11.047

    Article  CAS  PubMed  Google Scholar 

  80. Oshima Y, Namao K, Kamijou A et al (1995) Powerful hepatoprotective and hepatotoxic plant oligostilbenes, isolated from the oriental medicinal plant Vitis coignetiae (Vitaceae). Experientia 51:63–66. https://doi.org/10.1007/BF01964921

    Article  CAS  PubMed  Google Scholar 

  81. Özdemir F, Akalin G, Şen M et al (2014) Towards novel anti-tumor strategies for hepatic cancer: ε-viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells. OMICS A Journal of Integrative Biology 18:324–334. https://doi.org/10.1089/omi.2013.0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Özdemir F, Apaydın E, Önder Nİ et al (2018) Apoptotic effects of ε-viniferin in combination with cis-platin in C6 cells. Cytotechnology 70:1061–1073. https://doi.org/10.1007/s10616-018-0197-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Özdemir F, İncesu Z, Şena M et al (2016) Implications of enhanced effectiveness of vincristine sulfate/ε-viniferin combination compared to vincristine sulfate only on HepG2 cells. Dicle Tıp Dergisi 43:534–541

    Google Scholar 

  84. Privat C, Telo JP, Bernardes-Genisson V et al (2002) Antioxidant properties of trans-ε-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media. J Agric Food Chem 50:1213–1217. https://doi.org/10.1021/jf010676t

    Article  CAS  PubMed  Google Scholar 

  85. Rivière C, Papastamoulis Y, Fortin PY et al (2010) New stilbene dimers against amyloid fibril formation. Bioorg Med Chem Lett 20:3441–3443. https://doi.org/10.1016/j.bmcl.2009.09.074

    Article  CAS  PubMed  Google Scholar 

  86. Rivière C, Richard T, Quentin L et al (2007) Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167. https://doi.org/10.1016/j.bmc.2006.09.069

    Article  CAS  PubMed  Google Scholar 

  87. Sáez V, Pastene E, Vergara C et al (2018) Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chem 265:101–110. https://doi.org/10.1016/j.foodchem.2018.05.050

    Article  CAS  PubMed  Google Scholar 

  88. Sahidin I, Wahyuni W, Malaka MH, Imran I (2017) Antibacterial and cytotoxic potencies of stilbene oligomers from stem barks of baoti (Dryobalanops lanceolata) growing in Kendari, Indonesia. Asian Journal of Pharmaceutical and Clinical Research 10:139–143. https://doi.org/10.14814/phy2.12790

  89. Sasikumar P, Lekshmy K, Sini S et al (2019) Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. J Ethnopharmacol 236:196–204. https://doi.org/10.1016/j.jep.2019.01.046

    Article  CAS  PubMed  Google Scholar 

  90. Seino S, Kimoto T, Yoshida H et al (2018) Gnetin C, a resveratrol dimer, reduces amyloid-β 1–42 (Aβ42) production and ameliorates Aβ42-lowered cell viability in cultured SH-SY5Y human neuroblastoma cells. Biomedical Research (Japan) 39:105–115. https://doi.org/10.2220/biomedres.39.105

    Article  CAS  Google Scholar 

  91. Sergi D, Alex G, Beaulieu J, et al (2021) Anti-Apoptotic and Anti-Inflammatory Role of Trans ε-Viniferin in a neuron–glia co-culture cellular model of Parkinson’s disease. Foods 10:586. https://doi.org/10.3390/foods10030586

  92. Sharma A, Boise LH, Shanmugam M (2019) Cancer metabolism and the evasion of apoptotic cell death. Cancers 11. https://doi.org/10.3390/cancers11081144

  93. Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259

    Article  CAS  Google Scholar 

  94. Su PS, Doerksen RJ, Chen SH et al (2015) Screening and profiling stilbene-type natural products with angiotensin-converting enzyme inhibitory activity from Ampelopsis brevipedunculata var. hancei (Planch.) Rehder. J Pharm Biomed Anal 108:70–77. https://doi.org/10.1016/j.jpba.2015.01.053

    Article  CAS  PubMed  Google Scholar 

  95. Suzuki K, Shimizu T, Kawabata J, Mizutani J (1987) New 3,5,4’-trihydroxystilbene (resveratrol) oligomers from Carex fedia Nees var. miyabei (Franchet) T. Koyama (Cyperaceae). Agric Biol Chem 51:1003–1008. https://doi.org/10.1271/bbb1961.51.1003

    Article  CAS  Google Scholar 

  96. Tanaka T, Ito T, Iinuma M et al (2000) Stilbene oligomers in roots of Sophora davidii. Phytochemistry 53:1009–1014. https://doi.org/10.1016/S0031-9422(00)00016-9

    Article  CAS  PubMed  Google Scholar 

  97. Tarhan S, Özdemir F, İncesu Z, Demirkan ES (2016) Direct and protective effects of single or combined addition of vincristine and ε-viniferin on human HepG2 cellular oxidative stress markers in vitro. Cytotechnology 68:1081–1094. https://doi.org/10.1007/s10616-015-9863-z

    Article  CAS  PubMed  Google Scholar 

  98. Turck D, Bresson JL, Burlingame B et al (2016) Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J 14. https://doi.org/10.2903/j.efsa.2016.4594

  99. Vion E, Page G, Bourdeaud E et al (2018) Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol Cell Neurosci 88:1–6. https://doi.org/10.1016/j.mcn.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  100. Wang KT, Chen LG, Tseng SH et al (2011) Anti-inflammatory effects of resveratrol and oligostilbenes from Vitis thunbergii var. taiwaniana against lipopolysaccharide-induced arthritis. J Agric Food Chem 59:3649–3656. https://doi.org/10.1021/jf104718g

    Article  CAS  PubMed  Google Scholar 

  101. Watson T, Goon PKY, Lip GYH (2008) Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid Redox Signal 10:1079–1088. https://doi.org/10.1089/ars.2007.1998

  102. Wibowo A, Ahmat N, Hamzah AS et al (2011) Malaysianol A, a new trimer resveratrol oligomer from the stem bark of Dryobalanops aromatica. Fitoterapia 82:676–681. https://doi.org/10.1016/j.fitote.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  103. Wibowo A, Ahmat N, Hamzah AS et al (2014) Identification and biological activity of secondary metabolites from Dryobalanops beccarii. Phytochem Lett 9:117–122. https://doi.org/10.1016/j.phytol.2014.05.001

    Article  CAS  Google Scholar 

  104. Willenberg I, Meschede AK, Gueler F et al (2015) Food polyphenols fail to cause a biologically relevant reduction of COX-2 activity. PLoS One 10:e0139147. https://doi.org/10.1371/journal.pone.0139147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Willenberg I, Michael M, Wonik J et al (2015) Investigation of the absorption of resveratrol oligomers in the Caco-2 cellular model of intestinal absorption. Food Chem 167:245–250. https://doi.org/10.1016/j.foodchem.2014.06.103

    Article  CAS  PubMed  Google Scholar 

  106. Wu CW, Nakamoto Y, Hisatome T et al (2020) Resveratrol and its dimers ε-viniferin and δ-viniferin in red wine protect vascular endothelial cells by a similar mechanism with different potency and efficacy. Kaohsiung J Med Sci 36:535–542. https://doi.org/10.1002/kjm2.12199

    Article  CAS  PubMed  Google Scholar 

  107. Xueyan R, Jia Y, Xuefeng Y et al (2018) Isolation and purification of five phenolic compounds from the Xinjiang wine grape (Vitis Vinifera) and determination of their antioxidant mechanism at cellular level. Eur Food Res Technol 244:1569–1579. https://doi.org/10.1007/s00217-018-3070-z

    Article  CAS  Google Scholar 

  108. Yim NH, Ha DT, Trung TN et al (2010) The antimicrobial activity of compounds from the leaf and stem of Vitis amurensis against two oral pathogens. Bioorg Med Chem Lett 20:1165–1168. https://doi.org/10.1016/j.bmcl.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  109. Yin X, Yu J, Kong Q, Ren X (2017) Mechanism of isomers and analogues of resveratrol dimers selectively quenching singlet oxygen by UHPLC-ESI-MS2. Food Chem 237:1101–1111. https://doi.org/10.1016/j.foodchem.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  110. Zga N, Papastamoulis Y, Toribio A et al (2009) Preparative purification of antiamyloidogenic stilbenoids from Vitis vinifera (Chardonnay) stems by centrifugal partition chromatography. J Chromatogr B Anal Technol Biomed Life Sci 877:1000–1004. https://doi.org/10.1016/j.jchromb.2009.02.026

    Article  CAS  Google Scholar 

  111. Zghonda N, Yoshida S, Araki M et al (2011) Greater effectiveness of ε-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration. Biosci Biotechnol Biochem 75:1259–1267. https://doi.org/10.1271/bbb.110022

    Article  CAS  PubMed  Google Scholar 

  112. Zghonda N, Yoshida S, Ezaki S et al (2012) ε-Viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart. Bioscience. Biotechnology and Biochemistry 76:954–960. https://doi.org/10.1271/bbb.110975

    Article  CAS  Google Scholar 

  113. Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42. https://doi.org/10.1016/j.cofs.2016.02.002

  114. Zhang S, Ma Y, Feng J (2020) Neuroprotective mechanisms of ϵ-viniferin in a rotenone-induced cell model of Parkinson’s disease: Significance of SIRT3-mediated FOXO3 deacetylation. Neural Regen Res 15:2143–2153. https://doi.org/10.4103/1673-5374.282264

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang Y, Jayaprakasam B, Seeram NP et al (2004) Insulin secretion and cyclooxygenase enzyme inhibition by cabernet sauvignon grape skin compounds. J Agric Food Chem 52:228–233. https://doi.org/10.1021/jf034616u

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Stéphanie Krisa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaumont, P., Courtois, A., Atgié, C. et al. In the shadow of resveratrol: biological activities of epsilon-viniferin. J Physiol Biochem 78, 465–484 (2022). https://doi.org/10.1007/s13105-022-00880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00880-x

Keywords

Navigation