Skip to main content

Advertisement

Log in

Caveolin-1 knockout mice have altered serum N-glycan profile and sialyltransferase tissue expression

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Caveolin-1 (Cav-1) is a constitutive protein within caveolar membranes. Previous studies from our group and others indicated that Cav-1 could mediate N-glycosylation, α2,6-sialylation, and fucosylation in mouse hepatocarcinoma cells in vitro. However, little is known about the effect of Cav-1 expression on glycosylation modifications in vivo. In this study, the N-glycan profiles in serum from Cav-1−/− mice were investigated by lectin microarray and mass spectrometric analysis approaches. The results showed that levels of multi-antennary branched, α2,6-sialylated, and galactosylated N-glycans increased, while high-mannose typed and fucosylated N-glycans decreased in the serum of Cav-1−/− mice, compared with that of wild-type mice. Furthermore, the real-time quantitative PCR analysis indicated that α2,6-sialyltransferase gene expression decreased significantly in Cav-1−/− mouse organ tissues, but α2,3- and α2,8-sialyltransferase did not. Of them, both mRNA and protein expression levels of the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) had dramatically reduced in Cav-1−/− mice organ tissues, which was consistent with the α2,6-sialyl Gal/GalNAc level reduced significantly in tissues instead of serum from Cav-1−/− mice. These results provide for the first time the N-glycans profile of Cav-1−/− mice serum, which will facilitate understanding the function of Cav-1 from the perspective of glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J, Fleming CK, Rufini A, Tusche MW, Brustle A, Ohashi PS, Lewis JD, Mak TW (2012) The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896. https://doi.org/10.1038/onc.2011.288

    Article  CAS  PubMed  Google Scholar 

  2. Bull C, Stoel MA, den Brok MH, Adema GJ (2014) Sialic acids sweeten a tumor’s life. Cancer Res 74:3199–3204. https://doi.org/10.1158/0008-5472.CAN-14-0728

    Article  CAS  PubMed  Google Scholar 

  3. Cheng JPX, Nichols BJ (2016) Caveolae: one function or many? Trends Cell Biol 26:177–189. https://doi.org/10.1016/j.tcb.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  4. Clerc F, Novokmet M, Dotz V, Reiding KR, de Haan N, Kammeijer GSM, Dalebout H, Bladergroen MR, Vukovic F, Rapp E, Targan SR, Barron G, Manetti N, Latiano A, McGovern DPB, Annese V, Lauc G, Wuhrer M, Consortium I-B (2018) Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology 155:829–843. https://doi.org/10.1053/j.gastro.2018.05.030

    Article  CAS  PubMed  Google Scholar 

  5. Codrici E, Albulescu L, Popescu ID, Mihai S, Enciu AM, Albulescu R, Tanase C, Hinescu ME (2018) Caveolin-1-knockout mouse as a model of inflammatory diseases. J Immunol Res 2018:2498576. https://doi.org/10.1155/2018/2498576

  6. Dalziel M, Dall’Olio F, Mungul A, Piller V, Piller F (2004) Ras oncogene induces beta-galactoside alpha2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. Eur J Biochem 271:3623–3634. https://doi.org/10.1111/j.1432-1033.2004.04284.x

    Article  CAS  PubMed  Google Scholar 

  7. Deng SK, Xiang YL, Yi LI, Hou XY, Shen L (2017) Alterations of caveolin-1 and adhesion molecules in a mouse model of acute lung injury induced by lipopolysaccharide. Life Sci Res 21:325–328. https://doi.org/10.16605/j.cnki.1007-7847.2017.04.008

  8. Domino SE, Hiraiwa N, Lowe JB (1997) Molecular cloning, chromosomal assignment and tissue-specific expression of a murine alpha(1,2)fucosyltransferase expressed in thymic and epididymal epithelial cells. Biochem J 327(Pt 1):105–115. https://doi.org/10.1042/bj3270105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dotz V, Lemmers RFH, Reiding KR, HipgraveEderveen AL, Lieverse AG, Mulder MT, Sijbrands EJG, Wuhrer M, van Hoek M (2018) Plasma protein N-glycan signatures of type 2 diabetes. Biochim Biophys Acta 1862:2613–2622. https://doi.org/10.1016/j.bbagen.2018.08.005

    Article  CAS  Google Scholar 

  10. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452. https://doi.org/10.1126/science.1062688

    Article  CAS  PubMed  Google Scholar 

  11. Gersten KM, Natsuka S, Trinchera M, Petryniak B, Kelly RJ, Hiraiwa N, Jenkins NA, Gilbert DJ, Copeland NG, Lowe JB (1995) Molecular cloning, expression, chromosomal assignment, and tissue-specific expression of a murine alpha-(1,3)-fucosyltransferase locus corresponding to the human ELAM-1 ligand fucosyl transferase. J Biol Chem 270:25047–25056. https://doi.org/10.1074/jbc.270.42.25047

    Article  CAS  PubMed  Google Scholar 

  12. Huang CC, Liu YM, Wu HM, Sun DH, Li Y (2017) Characterization of IgG glycosylation in rheumatoid arthritis patients by MALDI-TOF-MSn and capillary electrophoresis. Anal Bioanal Chem 409:3731–3739. https://doi.org/10.1007/s00216-017-0302-1

    Article  CAS  PubMed  Google Scholar 

  13. Jian Q, Yang Z, Shu J, Liu XW, Zhang J, Li Z (2018) Lectin BS-I inhibits cell migration and invasion via AKT/GSK-3 beta/beta-catenin pathway in hepatocellular carcinoma. J Cell Mol Med 22:315–329. https://doi.org/10.1111/jcmm.13320

    Article  CAS  PubMed  Google Scholar 

  14. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, Nussenzweig MC (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1898–1901. https://doi.org/10.1126/science.1069540

    Article  CAS  PubMed  Google Scholar 

  15. Lim JS, Nguyen KC, Han JM, Jang IS, Fabian C, Cho KA (2015) Direct regulation of TLR5 Expression by caveolin-1. Mol Cells 38:1111–1117. https://doi.org/10.14348/molcells.2015.0213

  16. Lim JS, Nguyen KCT, Nguyen CT, Jang IS, Han JM, Fabian C, Lee SE, Rhee JH, Cho KA (2015) Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell 14:907–915. https://doi.org/10.1111/acel.12383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC (2007) Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 204:2373–2382. https://doi.org/10.1084/jem.20062340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867. https://doi.org/10.1016/j.cell.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  19. Park DS, Cohen AW, Frank PG, Razani B, Lee HK, Williams TM, Chandra M, Shirani J, De Souza AP, Tang BY, Jelicks LA, Factor SM, Weiss LM, Tanowitz HB, Lisanti MP (2003) Caveolin-1 null (-/-) mice show dramatic reductions in life span. Biochemistry-Us 42:15124–15131. https://doi.org/10.1021/Bi0356348

    Article  CAS  Google Scholar 

  20. Parton RG (2018) Caveolae: structure, function, and relationship to disease. Annu Rev Cell Dev Bi 34:111–136. https://doi.org/10.1146/annurev-cellbio-100617-062737

    Article  CAS  Google Scholar 

  21. Quest AFG, Gutierrez-Pajares JL, Torres VA (2008) Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med 12:1130–1150. https://doi.org/10.1111/j.1582-4934.2008.00331.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJS (2001) Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry-Us 40:8868–8876. https://doi.org/10.1021/bi010475i

    Article  CAS  Google Scholar 

  23. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li MM, Pestell RG, Di Vizio D, Hou H, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138. https://doi.org/10.1074/jbc.M105408200

    Article  CAS  PubMed  Google Scholar 

  24. Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15:346–366. https://doi.org/10.1038/s41581-019-0129-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sasai K, Ikeda Y, Ihara H, Honke K, Taniguchi N (2003) Caveolin-1 regulates the functional localization of N-acetylglucosaminyltransferase III within the golgi apparatus. J Biol Chem 278:25295–25301. https://doi.org/10.1074/jbc.M301913200

    Article  CAS  PubMed  Google Scholar 

  26. Turner GA (1992) N-glycosylation of serum-proteins in disease and its investigation using lectins. Clin Chim Acta 208:149–171. https://doi.org/10.1016/0009-8981(92)90073-Y

    Article  CAS  PubMed  Google Scholar 

  27. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (2015) Essentials of glycobiology, 3rd edn. Cold Spring Harbor. New York

  28. Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B (1990) Recognition by Elam-1 of the Sialyl-Lex determinant on myeloid and tumor-cells. Science 250:1132–1135. https://doi.org/10.1126/science.1701275

    Article  CAS  PubMed  Google Scholar 

  29. Wang XN, Deng Z, Huang CC, Zhu T, Lou JT, Wang L, Li Y (2018) Differential N-glycan patterns identified in lung adenocarcinoma by N-glycan profiling of formalin-fixed paraffin-embedded (FFPE) tissue sections. J Proteomics 172:1–10. https://doi.org/10.1016/j.jprot.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  30. Yu HJ, Li XJ, Chen MT, Zhang F, Liu XW, Yu JM, Zhong YG, Shu J, Chen WT, Du HQ, Zhang K, Zhang C, Zhang J, Xie H, Li Z (2019) Integrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinoma. Front Oncol 9:636. https://doi.org/10.3389/fonc.2019.00636

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu HJ, Shu J, Li Z (2020) Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomic 17:27–39. https://doi.org/10.1080/14789450.2020.1720512

    Article  CAS  Google Scholar 

  32. Yu S, Fan J, Liu L, Zhang L, Wang S, Zhang J (2013) Caveolin-1 up-regulates integrin alpha2,6-sialylation to promote integrin alpha5beta1-dependent hepatocarcinoma cell adhesion. FEBS Lett 587:782–787. https://doi.org/10.1016/j.febslet.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  33. Yu S, Zhang L, Li N, Fan J, Liu L, Zhang J, Wang S (2012) Caveolin-1 up-regulates ST6Gal-I to promote the adhesive capability of mouse hepatocarcinoma cells to fibronectin via FAK-mediated adhesion signaling. Biochem Biophys Res Commun 427:506–512. https://doi.org/10.1016/j.bbrc.2012.09.086

    Article  CAS  PubMed  Google Scholar 

  34. Yuan Q, Chen X, Han Y, Lei T, Wu Q, Yu X, Wang L, Fan Z, Wang S (2018) Modification of alpha2,6-sialylation mediates the invasiveness and tumorigenicity of non-small cell lung cancer cells in vitro and in vivo via Notch1/Hes1/MMPs pathway. Int J Cancer 143:2319–2330. https://doi.org/10.1002/ijc.31737

    Article  CAS  PubMed  Google Scholar 

  35. Zhang C, Huang H, Zhang JS, Wu Q, Chen XX, Huang TM, Li WL, Liu YB, Zhang JN (2019) Caveolin-1 promotes invasion and metastasis by upregulating Pofut1 expression in mouse hepatocellular carcinoma. Cell Death Dis 10:477. https://doi.org/10.1038/S41419-019-1703-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang C, Wu Q, Huang H, Chen XX, Huang TM, Li WL, Zhang JN, Liu YB (2020) Caveolin-1 upregulates Fut8 expression by activating the Wnt/beta-catenin pathway to enhance HCC cell proliferative and invasive ability. Cell Biol Int. https://doi.org/10.1002/cbin.11426

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhong YG, Guo YH, Liu XW, Zhang JX, Ma TR, Shu J, Yang JJ, Zhang J, Jia ZS, Li Z (2017) Serum glycopatterns as novel potential biomarkers for diagnosis of acute-on-chronic hepatitis B liver failure. Sci Rep-Uk 7:45957. https://doi.org/10.1038/Srep45957

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Major State Basic Research Development Program of China (No. 2012CB822103), the National Natural Science Foundation of China (No. 31570802).

Author information

Authors and Affiliations

Authors

Contributions

JNZ designed the research study; XXC, LPW, YSW, HSZ, WJD, XY, CCH, and YL performed the experiments; XXC, LPW, CCH, YL analyzed the data; XXC, SJW, and JNZ wrote the manuscript. XXC, LPW, SJW, JNZ revised the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Jianing Zhang.

Ethics declarations

Conflict of interest

All the authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13041 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, L., Wu, Y. et al. Caveolin-1 knockout mice have altered serum N-glycan profile and sialyltransferase tissue expression. J Physiol Biochem 78, 73–83 (2022). https://doi.org/10.1007/s13105-021-00840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00840-x

Keywords

Navigation