Skip to main content
Log in

Long non-coding RNA OIP5-AS1 promotes pancreatic cancer cell growth through sponging miR-342-3p via AKT/ERK signaling pathway

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J (2019) Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: a new look at hallmarks of breast cancer. J Cell Physiol 234(7):10080–10100. https://doi.org/10.1002/jcp.27941

    Article  CAS  PubMed  Google Scholar 

  2. Chang L, Fang S, Chen Y, Yang Z, Yuan Y, Zhang J, Ye L, Gu W (2019) Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway. Lipids Health Dis 18(1):118–110. https://doi.org/10.1186/s12944-019-1058-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132. https://doi.org/10.3322/caac.21338

    Article  Google Scholar 

  4. Cheng D, Fan J, Ma Y, Zhou Y, Qin K, Shi M, Yang J (2019) LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p. Cell Biosci 9:28. https://doi.org/10.1186/s13578-019-0290-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dai J, Xu L, Hu X, Han G, Jiang H, Sun H, Zhu G, Tang X (2018) Long noncoding RNA OIP5-AS1 accelerates CDK14 expression to promote osteosarcoma tumorigenesis via targeting miR-223. Biomed Pharmacother 106:1441–1447. https://doi.org/10.1016/j.biopha.2018.07.109

    Article  CAS  PubMed  Google Scholar 

  6. Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M (2016) Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 64(3):565–579. https://doi.org/10.1016/j.molcel.2016.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Draney C, Austin MC, Leifer AH, Smith CJ, Kener KB, Aitken TJ, Hess KH, Haines AC, Lett LA, Hernandez-Carretero A, Fueger PT, Arlotto M, Tessem JS (2018) HDAC1 overexpression enhances beta-cell proliferation by down-regulating Cdkn1b/p27. Biochem J 475(24):3997–4010. https://doi.org/10.1042/bcj20180465

    Article  CAS  PubMed  Google Scholar 

  8. Dreyer SB, Chang DK, Bailey P, Biankin AV (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clin Cancer Res 23(7):1638–1646. https://doi.org/10.1158/1078-0432.ccr-16-2411

    Article  PubMed  Google Scholar 

  9. Dumartin L, Alrawashdeh W, Trabulo SM, Radon TP, Steiger K, Feakins RM, di Magliano MP, Heeschen C, Esposito I, Lemoine NR, Crnogorac-Jurcevic T (2017) ER stress protein AGR2 precedes and is involved in the regulation of pancreatic cancer initiation. Oncogene 36(22):3094–3103. https://doi.org/10.1038/onc.2016.459

    Article  CAS  PubMed  Google Scholar 

  10. Gao Y, Zhang SG, Wang ZH, Liao JC (2017) Down-regulation of miR-342-3p in hepatocellular carcinoma tissues and its prognostic significance. Eur Rev Med Pharmacol Sci 21(9):2098–2102

    CAS  PubMed  Google Scholar 

  11. Greenblatt MB, Park KH, Oh H, Kim JM, Shin DY, Lee JM, Lee JW, Singh A, Lee KY, Hu D, Xiao C, Charles JF, Penninger JM, Lotinun S, Baron R, Ghosh S, Shim JH (2015) CHMP5 controls bone turnover rates by dampening NF-kappaB activity in osteoclasts. J Exp Med 212(8):1283–1301. https://doi.org/10.1084/jem.20150407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iannotti FA, Pagano E, Guardiola O, Adinolfi S, Saccone V, Consalvi S, Piscitelli F, Gazzerro E, Busetto G, Carrella D, Capasso R, Puri PL, Minchiotti G, Di Marzo V (2018) Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nat Commun 9(1):3950. https://doi.org/10.1038/s41467-018-06267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH, Gorospe M (2016) LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res 44(5):2378–2392. https://doi.org/10.1093/nar/gkw017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klinge CM (2018) Non-coding RNAs in breast Cancer: intracellular and intercellular communication. Non-coding RNA 4(4). https://doi.org/10.3390/ncrna4040040

  15. Lee KH, Lee JK, Choi DW, Do IG, Sohn I, Jang KT, Jung SH, Heo JS, Choi SH, Lee KT (2015) Postoperative prognosis prediction of pancreatic cancer with seven microRNAs. Pancreas 44(5):764–768. https://doi.org/10.1097/mpa.0000000000000346

    Article  CAS  PubMed  Google Scholar 

  16. Li M, Ning J, Li Z, Fei Q, Zhao C, Ge Y, Wang L (2019) Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338-3p/NRP1 axis. Biomed Pharmacother 118:109259. https://doi.org/10.1016/j.biopha.2019.109259

    Article  CAS  PubMed  Google Scholar 

  17. Lin QJ, Yang F, Jin C, Fu DL (2015) Current status and progress of pancreatic cancer in China. World J Gastroenterol 21(26):7988–8003. https://doi.org/10.3748/wjg.v21.i26.7988

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Bi T, Wang G, Dai W, Wu G, Qian L, Gao Q, Shen G (2015) Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedeberg's Arch Pharmacol 388(3):295–304. https://doi.org/10.1007/s00210-014-1071-4

    Article  CAS  Google Scholar 

  19. Liu QG, Li YJ, Yao L (2018) Knockdown of AGR2 induces cell apoptosis and reduces chemotherapy resistance of pancreatic cancer cells with the involvement of ERK/AKT axis. Pancreatology 18(6):678–688. https://doi.org/10.1016/j.pan.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Kang L, Han J, Wang Y, Shen C, Yan Z, Tai Y, Zhao C (2018) miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect. OncoTargets Therapy 11:1643–1653. https://doi.org/10.2147/ott.s161586

    Article  CAS  PubMed  Google Scholar 

  21. Naemura M, Kuroki M, Tsunoda T, Arikawa N, Sawata Y, Shirasawa S, Kotake Y (2018) The long noncoding RNA OIP5-AS1 is involved in the regulation of cell proliferation. Anticancer Res 38(1):77–81. https://doi.org/10.21873/anticanres.12194

    Article  CAS  PubMed  Google Scholar 

  22. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing MiRNA-LncRNA interactions. Methods Mol Biol (Clifton, NJ) 1402:271–286. https://doi.org/10.1007/978-1-4939-3378-5_21

    Article  CAS  Google Scholar 

  23. Permuth-Wey J, Chen YA, Fisher K, McCarthy S, Qu X, Lloyd MC, Kasprzak A, Fournier M, Williams VL, Ghia KM, Yoder SJ, Hall L, Georgeades C, Olaoye F, Husain K, Springett GM, Chen DT, Yeatman T, Centeno BA, Klapman J, Coppola D, Malafa M (2015) A genome-wide investigation of microRNA expression identifies biologically-meaningful microRNAs that distinguish between high-risk and low-risk intraductal papillary mucinous neoplasms of the pancreas. PLoS One 10(1):e0116869. https://doi.org/10.1371/journal.pone.0116869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Previdi MC, Carotenuto P, Zito D, Pandolfo R, Braconi C (2017) Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol (London, England) 13(5):443–453. https://doi.org/10.2217/fon-2016-0253

    Article  CAS  Google Scholar 

  25. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin SJ, Kim S, Parasuraman S, Caponigro G, Schnepp RW, Wood AC, Pawel B, Cole KA, Maris JM (2013) Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 19(22):6173–6182. https://doi.org/10.1158/1078-0432.ccr-13-1675

    Article  CAS  PubMed  Google Scholar 

  26. Romero-Cordoba SL, Rodriguez-Cuevas S, Bautista-Pina V, Maffuz-Aziz A, D'Ippolito E, Cosentino G, Baroni S, Iorio MV, Hidalgo-Miranda A (2018) Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep 8(1):12252. https://doi.org/10.1038/s41598-018-29708-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K (2018) Non-coding RNAs in Glioma. Cancers 11(1). https://doi.org/10.3390/cancers11010017

  28. Shen X, Artinyan A, Jackson D, Thomas RM, Lowy AM, Kim J (2010) Chemokine receptor CXCR4 enhances proliferation in pancreatic cancer cells through AKT and ERK dependent pathways. Pancreas 39(1):81–87. https://doi.org/10.1097/MPA.0b013e3181bb2ab7

    Article  CAS  PubMed  Google Scholar 

  29. Song L, Wang L, Pan X, Yang C (2020) lncRNA OIP5-AS1 targets ROCK1 to promote cell proliferation and inhibit cell apoptosis through a mechanism involving miR-143-3p in cervical cancer. Braz J Med Biol Res 53(1):e8883. https://doi.org/10.1590/1414-431x20198883

    Article  PubMed  PubMed Central  Google Scholar 

  30. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16(4):201–218. https://doi.org/10.1038/nrc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun D, Liu Y, Yu Q, Zhou Y, Zhang R, Chen X, Hong A, Liu J (2013) The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials 34(1):171–180. https://doi.org/10.1016/j.biomaterials.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  32. Tian S, Hu J, Tao K, Wang J, Chu Y, Li J, Liu Z, Ding X, Xu L, Li Q, Cai M, Gao J, Shuai X, Wang G, Wang L, Wang Z (2018) Secreted AGR2 promotes invasion of colorectal cancer cells via Wnt11-mediated non-canonical Wnt signaling. Exp Cell Res 364(2):198–207. https://doi.org/10.1016/j.yexcr.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  Google Scholar 

  34. Van Roosbroeck K, Calin GA (2017) Cancer hallmarks and microRNAs: the therapeutic connection. Adv Cancer Res 135:119–149. https://doi.org/10.1016/bs.acr.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Wang LW, Li XB, Liu Z, Zhao LH, Wang Y, Yue L (2019) Long non-coding RNA OIP5-AS1 promotes proliferation of gastric cancer cells by targeting miR-641. Eur Rev Med Pharmacol Sci 23(24):10776–10784. https://doi.org/10.26355/eurrev_201912_19780

    Article  PubMed  Google Scholar 

  36. Xie X, Liu H, Wang M, Ding F, Xiao H, Hu F, Hu R, Mei J (2015) miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumour Biol 36(7):5031–5038. https://doi.org/10.1007/s13277-015-3154-3

    Article  CAS  PubMed  Google Scholar 

  37. Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, Guo R, Si J, Li L, Xue J, Shao ZM, Wu ZH, Huang S, Wu J (2019) LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer 18(1):187. https://doi.org/10.1186/s12943-019-1115-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu B, Gong X, Zi L, Li G, Dong S, Chen X, Li Y (2019) Silencing of DLEU2 suppresses pancreatic cancer cell proliferation and invasion by upregulating microRNA-455. Cancer Sci 110(5):1676–1685. https://doi.org/10.1111/cas.13987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xue X, Fei X, Hou W, Zhang Y, Liu L, Hu R (2018) miR-342-3p suppresses cell proliferation and migration by targeting AGR2 in non-small cell lung cancer. Cancer Lett 412:170–178. https://doi.org/10.1016/j.canlet.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  40. Yang J, Jiang B, Hai J, Duan S, Dong X, Chen C (2019) Long noncoding RNA opa-interacting protein 5 antisense transcript 1 promotes proliferation and invasion through elevating integrin alpha6 expression by sponging miR-143-3p in cervical cancer. J Cell Biochem 120(1):907–916. https://doi.org/10.1002/jcb.27454

    Article  CAS  PubMed  Google Scholar 

  41. Ye L, Pu C, Tang J, Wang Y, Wang C, Qiu Z, Xiang T, Zhang Y, Peng W (2019) Transmembrane-4 L-six family member-1 (TM4SF1) promotes non-small cell lung cancer proliferation, invasion and chemo-resistance through regulating the DDR1/Akt/ERK-mTOR axis. Respir Res 20(1):106. https://doi.org/10.1186/s12931-019-1071-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeng H, Wang J, Chen T, Zhang K, Chen J, Wang L, Li H, Tuluhong D, Li J, Wang S (2019) Downregulation of long non-coding RNA Opa interacting protein 5-antisense RNA 1 inhibits breast cancer progression by targeting sex-determining region Y-box 2 by microRNA-129-5p upregulation. Cancer Sci 110(1):289–302. https://doi.org/10.1111/cas.13879

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Bi Y, Li J, Peng F, Li H, Li C, Wang L, Ren F, Xie C, Wang P, Liang W, Wang Z, Zhu D (2017) Long noncoding RNA FTX is upregulated in gliomas and promotes proliferation and invasion of glioma cells by negatively regulating miR-342-3p. Lab Investig 97(4):447–457. https://doi.org/10.1038/labinvest.2016.152

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Liu F, Yang F, Liu Y (2018) Kockdown of OIP5-AS1 expression inhibits proliferation, metastasis and EMT progress in hepatoblastoma cells through up-regulating miR-186a-5p and down-regulating ZEB1. Biomed Pharmacother 101:14–23. https://doi.org/10.1016/j.biopha.2018.02.026

    Article  CAS  PubMed  Google Scholar 

  45. Zhao L, Zhang Y (2015) miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NF-kappaB pathway. Biochem Biophys Res Commun 457(3):370–377. https://doi.org/10.1016/j.bbrc.2014.12.119

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from the Foundation of Department of Science and Technology, Liaoning Province (No. CA19).

Author information

Authors and Affiliations

Authors

Contributions

Zhen Liu contributed to the conception of the study; Jia Ma and Baosheng Wang performed the experiments; Xin Wu performed the data analysis; Xiangpeng Meng drafted and revised the manuscript.

Corresponding author

Correspondence to Zhen Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with ethical standards of Shengjing Hospital of China Medical University and with the Declaration of Helsinki and its later amendments or comparable ethical standards. All animal experiments were approved by Institutional Animal Care and Use Committee and performed in accordance with Guide for the Care and Use of Laboratory Animals.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

•OIP5-AS1 exerts oncogenic function in pancreatic cancer.

•miR-342-3p inhibits the progression of pancreatic cancer.

•OIP5-AS1 acts as a sponge of miR-342-3p in pancreatic cancer.

•AGR2 is a direct target gene of miR-342-3p.

•OIP5-AS1 contributes to pancreatic cancer progression via AKT and ERK pathways.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Ma, J., Wang, B. et al. Long non-coding RNA OIP5-AS1 promotes pancreatic cancer cell growth through sponging miR-342-3p via AKT/ERK signaling pathway. J Physiol Biochem 76, 301–315 (2020). https://doi.org/10.1007/s13105-020-00734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00734-4

Keywords

Navigation