Skip to main content

Advertisement

Log in

GLUT1 and GLUT8 support lactose synthesis in Golgi of murine mammary epithelial cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The mammary gland increases energy requirements during pregnancy and lactation to support epithelial proliferation and milk nutrients synthesis. Lactose, the principal carbohydrate of the milk, is synthetized in the Golgi of mammary epithelial cells by lactose synthase from glucose and UPD galactose. We studied the temporal changes in the expression of GLUT1 and GLUT8 in mammary gland and their association with lactose synthesis and proliferation in BALB/c mice. Six groups were used: virgin, pregnant at 2 and 17 days, lactating at 2 and 10 days, and weaning at 2 days. Temporal expression of GLUT1 and GLUT8 transporters by qPCR, western blot and immunohistochemistry, and its association with lactalbumin, Ki67, and cytokeratin 18 within mammary tissue was studied, along with subcellular localization. GLUT1 and GLUT8 transporters increased their expression during mammary gland progression, reaching 20-fold increasing in GLUT1 mRNA at lactation (p < 0.05) and 2-fold at protein level for GLUT1 and GLUT8 (p < 0.05 and 0.01, respectively). The temporal expression pattern was shared with cytokeratin 18 and Ki67 (p < 0.01). Endogenous GLUT8 partially co-localized with 58 K protein and α-lactalbumin in mammary tissue and with Golgi membrane–associated protein 130 in isolated epithelial cells. The spatial-temporal synchrony between expression of GLUT8/GLUT1 and alveolar cell proliferation, and its localization in cis-Golgi associated to lactose synthase complex, suggest that both transporters are involved in glucose uptake into this organelle, supporting lactose synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akers RM (2002) Lactation and the mammary gland, 1st edn. Blackwell Publishing Company, Iowa, USA. https://doi.org/10.1002/9781119264880

    Book  Google Scholar 

  2. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F (2016) Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes. Int J Mol Sci 17. https://doi.org/10.3390/ijms17060956

  3. Anderson SM, Rudolph MC, McManaman JL, Neville MC (2007) Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res 9:204. https://doi.org/10.1186/bcr1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atabai K, Sheppard D, Werb Z (2007) Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia 12:37–45. https://doi.org/10.1007/s10911-007-9036-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Augustin R, Riley J, Moley KH (2005) GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic 6:1196–1212

    Article  CAS  PubMed  Google Scholar 

  6. Capuco AV, Ellis SE, Hale SA, Long E, Erdman RA, Zhao X, Paape MJ (2003) Lactation persistency: insights from mammary cell proliferation studies. J Anim Sci 81(Suppl 3):18–31

    Article  CAS  PubMed  Google Scholar 

  7. Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH (2000) GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A 97:7313–7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carruthers A, DeZutter J, Ganguly A, Devaskar SU (2009) Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab 297:E836–E848. https://doi.org/10.1152/ajpendo.00496.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaiyabutr N, Faulkner A, Peaker M (1980) The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo. Biochem J 186:301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davies CR, Morris JS, Griffiths MR, Page MJ, Pitt A, Stein T, Gusterson BA (2006) Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development. Proteomics 6:5694–5704. https://doi.org/10.1002/pmic.200600202

    Article  CAS  PubMed  Google Scholar 

  11. Debosch BJ, Chen Z, Saben JL, Finck BN, Moley KH (2014) Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J Biol Chem 289:10989–10998. https://doi.org/10.1074/jbc.M113.527002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diril MK, Schmidt S, Krauss M, Gawlik V, Joost HG, Schürmann A, Haucke V, Augustin R (2009) Lysosomal localization of GLUT8 in the testis--the EXXXLL motif of GLUT8 is sufficient for its intracellular sorting via AP1- and AP2-mediated interaction. FEBS J 276:3729–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerlach C, Golding M, Larue L, Alison MR, Gerdes J (1997) Ki-67 immunoexpression is a robust marker of proliferative cells in the rat. Lab Investig 77:697–698

    CAS  PubMed  Google Scholar 

  14. Knight CH, Peaker M (1982) Mammary cell proliferation in mice during pregnancy and lactation in relation to milk yield. Q J Exp Physiol 67:165–177

    Article  CAS  PubMed  Google Scholar 

  15. Kuhn NJ, Wooding FB, White A (1980) Properties of galactosyltransferase-enriched vesicles of Golgi membranes from lactating-rat mammary gland. Eur J Biochem 103:377–385

    Article  CAS  PubMed  Google Scholar 

  16. Laporta J, Peters TL, Merriman KE, Vezina CM, Hernandez LL (2013) Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation. PLoS One 8:e57847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Livak KJ, Schmittgen TD (2011) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  18. Macheda ML, Williams ED, Best JD, Wlodek ME, Rogers S (2003) Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland. Cell Tissue Res 311:91–97. https://doi.org/10.1007/s00441-002-0661-5

    Article  CAS  PubMed  Google Scholar 

  19. Madon RJ, Martin S, Davies A, Fawcett HA, Flint DJ, Baldwin SA (1990) Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. Biochem J 272:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mardones L, Zúñiga FA, Villagrán M, Sotomayor K, Mendoza P, Escobar D, González M, Ormazabal V, Maldonado M, Oñate G, Angulo C, Concha II, Reyes AM, Cárcamo JG, Barra V, Vera JC, Rivas CI (2012) Essential role of intracellular glutathione in controlling ascorbic acid transporter expression and function in rat hepatocytes and hepatoma cells. Free Radic Biol Med 52:1874–1887. https://doi.org/10.1016/j.bbrc.2011.05.070

    Article  CAS  PubMed  Google Scholar 

  21. Muñoz-Montesino C, Roa FJ, Peña E, González M, Sotomayor K, Inostroza E, Muñoz CA, González I, Maldonado M, Soliz C, Reyes AM, Vera JC, Rivas CI (2014) Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2. Free Radic Biol Med 70:241–254. https://doi.org/10.1016/j.freeradbiomed.2014.02.021

    Article  CAS  Google Scholar 

  22. Nemeth BA, Tsang SW, Geske RS, Haney PM (2000) Golgi targeting of the GLUT1 glucose transporter in lactating mouse mammary gland. Pediatr Res 47:444–450

    Article  CAS  PubMed  Google Scholar 

  23. Piroli GG, Grillo CA, Hoskin EK, Znamensky V, Katz EB, Milner TA, McEwen BS, Charron MJ, Reagan LP (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J Comp Neurol 452:103–114. https://doi.org/10.1002/cne.10368

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt S, Joost HG, Schürmann A (2009) GLUT8, the enigmatic intracellular hexose transporter. Am J Physiol Endocrinol Metab 296:E614–E618. https://doi.org/10.1152/ajpendo.91019.2008

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt U, Briese S, Leicht K, Schürmann A, Joost HG, Al-Hasani H (2006) Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the beta2-adaptin subunit of the AP-2 adaptor complex. J Cell Sci 119:2321–2331

    Article  CAS  PubMed  Google Scholar 

  26. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR- publishing data that conform to the MIQE guidelines. Methods 50:1–4

    Article  CAS  Google Scholar 

  27. Toledo JR, Sánchez O, Montesino Seguí R, Fernández García Y, Rodríguez MP, Cremata JA (2005) Differential in vitro and in vivo glycosylation of human erythropoietin expressed in adenovirally transduced mouse mammary epithelial cells. Biochim Biophys Acta 1726:48–56

    Article  CAS  PubMed  Google Scholar 

  28. White MD, Kuhn NJ, Ward S (1980) Permeability of lactating-rat mammary gland Golgi membranes to monosaccharides. Biochem J 190:621–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiao CT, Cant JP (2005) Relationship between glucose transport and metabolism in isolated bovine mammary epithelial cells. J Dairy Sci 88:2794–2805. https://doi.org/10.3168/jds.S0022-0302(05)72959-3

    Article  CAS  PubMed  Google Scholar 

  30. Zhao FQ (2014) Biology of glucose transport in the mammary gland. J Mammary Gland Biol Neoplasia 19:3–17. https://doi.org/10.1007/s10911-013-9310-8

    Article  PubMed  Google Scholar 

  31. Zhao FQ, Okine EK, Kennelly JJ (1999) Glucose transporter gene expression in bovine mammary gland. J Anim Sci 77:2517–2522

    Article  CAS  PubMed  Google Scholar 

  32. Zhu LQ, Bao ZK, Hu WW, Lin J, Yang Q, Yu QH (2015) Cloning and functional analysis of goat SWEET1. Genet Mol Res 14:17124–17133. https://doi.org/10.4238/2015.December.16.12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Katia Muñoz, Fresia Jarpa, and Mr. Rafael Maura for technical support, and Mr. George Montgomery for manuscript editing. In memory of Dr. Juan Carlos Vera, who deceased during the development of this research.

Funding

This work was supported by Fondo de Desarrollo Científico y Tecnológico (FONDECYT), Chilean Government [grants 11121367 to LM and 3150285 to MV].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Mardones.

Ethics declarations

The Institutional Ethic Committee approved all procedures performed in animals conformed to the Guide of the Care and Use of Laboratory Animals of the National Council for Science and Technology Research (CONICYT, Chile).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 87 kb)

ESM 2

(DOCX 67 kb)

ESM 3

(PNG 213 kb)

High Resolution Image (TIF 20373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villagrán, M., Muñoz, M., Inostroza, E. et al. GLUT1 and GLUT8 support lactose synthesis in Golgi of murine mammary epithelial cells. J Physiol Biochem 75, 209–215 (2019). https://doi.org/10.1007/s13105-019-00679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00679-3

Keywords

Navigation