Skip to main content
Log in

Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully understood. Our study aimed to investigate differences in the functions encoded by the microbiome of infants at 18 months of age when the transition from early infant-feeding to solid family foods is established. To investigate the impact of maternal prepregnancy body mass index on infants’ gut microbiome, faecal samples from infants born to normoweight (n = 21) and obese mothers (n = 18) were analysed by 16S rRNA gene sequencing and a functional-inference-based microbiome analysis. Our results indicated that Firmicutes was significantly enriched in infants born to normoweight mothers whereas Bacteroidetes was significantly enriched in infants born to obese women. In both microbiomes, the greatest number of genes (>50%) that were assigned a function encoded for proteins involved in “metabolism” among tier 1 KEGG Orthology (KO) categories. At lower KO functional categories, the microbiome of infants born to normoweight mothers was characterized by a significant enrichment in the abundances of “pentose phosphate pathway” (p = 0.037), “lysine biosynthesis” (p = 0.043), “glycerolipid metabolism” (p = 0.042), and “C5-branched dibasic acid metabolism” (p = 0.045). Notably, the microbiome of infants born to obese mothers was significantly enriched in “streptomycin biosynthesis” (p = 0.047), “sulphur metabolism” (p = 0.041), “taurine and hypotaurine metabolism” (p = 0.036), and “lipopolysaccharide biosynthesis” (p = 0.043). In summary, our study showed that maternal prepregnancy obesity may imprint a selective gut microbial composition during late infancy with distinct functional performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta paediatrica (Oslo, Norway: 1992);98:229–38

  2. Allin KH, Nielsen T, Pedersen O (2015) Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol 172:R167–R177

    Article  CAS  PubMed  Google Scholar 

  3. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma Sci Transl Med, 7(307), 307ra152-307ra152

  4. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703

    Article  PubMed  Google Scholar 

  5. Berglund SK, García-Valdés L, Torres-Espinola FJ, Segura MT, Martínez-Zaldívar C, Aguilar MJ et al (2016) Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health 16:207

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brook I, Finegold SM (1979) Bacteriology and therapy of lung abscess in children. J Pediatr 94:10–12

    Article  CAS  PubMed  Google Scholar 

  7. Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO molecular medicine 5:1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Camarinha-Silva A, Jauregui R, Chaves-Moreno D, Oxley AP, Schaumburg F, Becker K et al (2014) Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 16:2939–2952

    Article  CAS  PubMed  Google Scholar 

  9. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cerdó T, García-Valdés L, Altmäe S, Ruíz A, Suárez A, Campoy C (2016) Role of microbiota function during early life on child’s neurodevelopment. Trends Food Sci Technol 57:273–288

    Article  Google Scholar 

  12. Cerdó T, Ruiz A, Campoy C. (2017) Human gut microbiota and obesity during development. Adiposity-Omics and Molecular Understanding: InTech; 2017

  13. Clarke SF, Murphy EF, O’Sullivan O, Ross RP, O’Toole PW, Shanahan F et al (2013) Targeting the microbiota to address diet-induced obesity: a time dependent challenge. PLoS One 8:e65790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM et al (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–DD72

    Article  CAS  PubMed  Google Scholar 

  16. Collado MC, Isolauri E, Laitinen K, Salminen S (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030

    Article  CAS  PubMed  Google Scholar 

  17. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences;107:11971-5

  19. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al (2015) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut: gutjnl-2015-309957

  20. Erkosar B, Storelli G, Defaye A, Leulier F (2013) Host-intestinal microbiota mutualism:“learning on the fly”. Cell Host Microbe 13:8–14

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4(6):e121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Till H et al (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226

    Article  CAS  PubMed  Google Scholar 

  23. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306

    Article  PubMed  PubMed Central  Google Scholar 

  24. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589

    Article  CAS  PubMed  Google Scholar 

  25. Galley JD, Bailey M, Dush CK, Schoppe-Sullivan S, Christian LM (2014) Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One 9:e113026

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Mantrana I, Collado MC (2016) Obesity and overweight: impact on maternal and milk microbiome and their role for infant health and nutrition. Mol Nutr Food Res 60:1865–1875

    Article  CAS  PubMed  Google Scholar 

  27. Human Microbiome Project C (2012) A framework for human microbiome research. Nature 486:215–221

    Article  Google Scholar 

  28. Ignacio A, Fernandes MR, Rodrigues VAA, Groppo FC, Cardoso AL, Avila-Campos MJ et al (2016) Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect 22:258. e1–258. e8

    Article  CAS  Google Scholar 

  29. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids research: gkr988

  30. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    Article  CAS  PubMed  Google Scholar 

  31. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, et al (2014) Patterned progression of bacterial populations in the premature infant gut. Proceedings of the National Academy of Sciences;111:12522-7

  33. Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J et al (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 7:e34233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laursen MF, Andersen LBB, Michaelsen KF, Mølgaard C, Trolle E, Bahl MI et al (2016) Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. Msphere 1:e00069–e00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  36. Linden, D. R., Levitt, M. D., Farrugia, G., & Szurszewski, J. H (2010) Endogenous production of H2S in the gastrointestinal tract: still in search of a physiologic function. Antioxid Redox Signal, 12(9), 1135–1146

  37. Linden DR. (2014) Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 10;20(5):818-30. doi: 10.1089/ars.2013.5312

  38. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. (2013) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut: gutjnl-2013

  39. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG et al (2013) Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 7:269–280

    Article  PubMed  Google Scholar 

  40. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6:610–618

    Article  CAS  PubMed  Google Scholar 

  41. Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62:1589–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mueller NT, Shin H, Pizoni A, Werlang IC, Matte U, Goldani MZ, Goldani HAS, Dominguez-Bello MG (2016) Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep 6

  43. Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, et al. (2017) Impact of westernized diet on gut microbiota in children on Leyte Island. Front Microbiol. 2017 Feb 14;8:197.

  44. Natamba BK, Sanchez SE, Gelaye B, Williams MA (2016) Concordance between self-reported pre-pregnancy body mass index (BMI) and BMI measured at the first prenatal study contact. BMC Pregnancy and Childbirth 16(1):187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2013) Package ‘vegan’. Community Ecology package, version 2(9)

  46. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics (Oxford, England);26:715-21

  47. Payne AN, Chassard C, Zimmermann M, Müller P, Stinca S, Lacroix C (2011) The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes 1(7):e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  49. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rahat-Rozenbloom, S., Fernandes, J., Gloor, G. B., & Wolever, T. M (2014) Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes, 38(12), 1525–1531

  51. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (New York, NY);341:1241214

  52. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7

  53. Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, Cepeda A (2017) Food additives, contaminants and other minor components: effects on human gut microbiota—a review. J Physiol Biochem:1–15

  54. Saad MJ, Santos A, Prada PO. (2016) Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016 Jul;31(4):283-93. doi: 10.1152/physiol.00041.2015

  55. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring, Md);18:190-5

  57. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Soderborg TK, Borengasser SJ, Barbour LA, Friedman JE (2016) Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia 59:895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tagliabue A, Elli M (2013) The role of gut microbiota in human obesity: recent findings and future perspectives. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 23:160–168

    Article  CAS  PubMed  Google Scholar 

  60. Tomasova L, Konopelski P, Ufnal M. (2016) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules. 2016 Nov 17;21(11). pii: E1558

  61. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  62. Villanueva-Millán MJ, Pérez-Matute P, Oteo JA (2015) Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 71(3):509–525

    Article  PubMed  Google Scholar 

  63. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao CK, Muir JG, Gibson PR (2016) Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther 43:181–196

    Article  CAS  PubMed  Google Scholar 

  65. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X (2013) Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 8(4):e61627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s 7th Framework Programme under grant agreement no. 613979 (MyNewGut Project 2013/KB/613979) and no. 329812 (MC IEF, NutriOmics) and by the Spanish Ministry of Economy and Competitiveness (MINECO) BFU2012-40254-C03-01. Tomás Cerdó participated in the PhD Program in Biomedicine of the University of Granada and is a fellow of the FPI (BES-2013-065133) Program at the Spanish Ministry of Economy and Competitiveness. This article will be part of the Doctoral PhD of Tomás Cerdó.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Campoy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerdó, T., Ruiz, A., Jáuregui, R. et al. Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. J Physiol Biochem 74, 159–169 (2018). https://doi.org/10.1007/s13105-017-0577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0577-x

Keywords

Navigation