Skip to main content

Advertisement

Log in

Hsp70 plays an important role in high-fat diet induced gestational hyperglycemia in mice

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GDM) has emerged as an epidemic disease during the last decade, affecting about 2 to 5 % pregnant women. Even among women who have gestational hyperglycemia may also be positively related to adverse outcomes as GDM. Since heat shock protein (Hsp) 70 has been reported to be associated with diabetes and insulin resistance and its expression was reported to be negatively regulated by the membrane-permeable Hsp70 inhibitor MAL3-101 while positively regulated by the Hsp70 activator BGP-15, we investigated whether Hsp70 played a role in a gestational hyperglycemia mouse model. Mice were divided into non-pregnant and pregnant groups, and each comprised three subgroups: control, high-fat diet (HFD) + MAL3-101, and HFD + BGP-15. We examined the serum levels of triglycerides, total cholesterol, glucose, and insulin, as well as conducted thermal detection of brown adipose tissue (BAT). The role of Hsp70 in BAT apoptosis was also investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining. Higher serum level of Hsp70 was associated with increased bodyweight gain after pregnancy in mice fed HFD. Circulating Hsp70 was elevated in control pregnant mice compared to control non-pregnant mice. BGP-induced serum Hsp70 expression reduced triglycerides, total cholesterol, glucose, and insulin levels in the serum. Additionally, thermal detection of BAT, TUNEL, and caspase-3 staining revealed relationship correlation between Hsp70 and BAT functions. Hsp70 level is associated with hyperglycemia during pregnancy. Our results support the role of Hsp70 in facilitating BAT activities and protecting BAT cells from apoptosis via caspase-3 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbosa-Sampaio HC et al (2015) Reduced nuclear protein 1 expression improves insulin sensitivity and protects against diet-induced glucose intolerance through up-regulation of heat shock protein 70. Biochim Biophys Acta 1852(5):962–969

    Article  CAS  PubMed  Google Scholar 

  2. Cabel MC et al (1988) Effects of ethoxyquin feed preservative and peroxide level on broiler performance. Poult Sci 67(12):1725–1730

    Article  CAS  PubMed  Google Scholar 

  3. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  4. Chu SY et al (2007) Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30(8):2070–2076

    Article  PubMed  Google Scholar 

  5. Chung J et al (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105(5):1739–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Clausen TD et al (2008) High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 31(2):340–346

    Article  PubMed  Google Scholar 

  7. Clausen TD et al (2009) Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab 94(7):2464–2470

    Article  CAS  PubMed  Google Scholar 

  8. Coustan DR (2013) Gestational diabetes mellitus. Clin Chem 59(9):1310–1321

    Article  CAS  PubMed  Google Scholar 

  9. Crul T et al (2013) Hydroximic acid derivatives: pleiotropic HSP co-inducers restoring homeostasis and robustness. Curr Pharm Des 19(3):309–346

    Article  CAS  PubMed  Google Scholar 

  10. Ding L, He S, Sun X (2014) HSP70 desensitizes osteosarcoma cells to baicalein and protects cells from undergoing apoptosis. Apoptosis 19(8):1269–1280

    Article  CAS  PubMed  Google Scholar 

  11. Fewell SW et al (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279(49):51131–51140

    Article  CAS  PubMed  Google Scholar 

  12. Fujimoto E et al (2015) Daily rhythm and heat shock protein expression in obese ob/ob mice. Nutr Neurosci 18(3):110–117

    Article  CAS  PubMed  Google Scholar 

  13. Garamvolgyi Z et al. (2015) Increased circulating heat shock protein 70 (HSPA1A) levels in gestational diabetes mellitus: a pilot study. Cell Stress Chaperones

  14. Gilmartin AB, Ural SH, Repke JT (2008) Gestational diabetes mellitus. Rev Obstet Gynecol 1(3):129–134

    PubMed  Google Scholar 

  15. Gombos I et al (2011) Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts. PLoS One 6(12):e28818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gupte AA et al (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58(3):567–578

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hartz AJ et al (1983) Relationship of obesity to diabetes: influence of obesity level and body fat distribution. Prev Med 12(2):351–357

    Article  CAS  PubMed  Google Scholar 

  18. Henstridge DC et al (2014) Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63(6):1881–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hooper PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14(2):113–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hsu SF et al (2013) Attenuating heat-induced cellular autophagy, apoptosis and damage in H9c2 cardiomyocytes by pre-inducing HSP70 with heat shock preconditioning. Int J Hyperthermia 29(3):239–247

    Article  CAS  PubMed  Google Scholar 

  21. Hunter-Lavin C et al (2004) Folate supplementation reduces serum hsp70 levels in patients with type 2 diabetes. Cell Stress Chaperones 9(4):344–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ikemoto S et al (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism 45(12):1539–1546

    Article  CAS  PubMed  Google Scholar 

  23. Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80(2):183–201

    Article  CAS  PubMed  Google Scholar 

  24. Kim JY et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117(9):2621–2637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kurucz I et al (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51(4):1102–1109

    Article  CAS  PubMed  Google Scholar 

  26. Landon MB, Gabbe SG (2011) Gestational diabetes mellitus. Obstet Gynecol 118(6):1379–1393

    Article  PubMed  Google Scholar 

  27. Leung AM, Redlak MJ, Miller TA (2015) Role of heat shock proteins in oxygen radical-induced gastric apoptosis. J Surg Res 193(1):135–144

    Article  CAS  PubMed  Google Scholar 

  28. Lidell ME, Betz MJ, Enerback S (2014) Brown adipose tissue and its therapeutic potential. J Intern Med 276(4):364–377

    Article  CAS  PubMed  Google Scholar 

  29. Literati-Nagy B et al (2010) Beneficial effect of the insulin sensitizer (HSP inducer) BGP-15 on olanzapine-induced metabolic disorders. Brain Res Bull 83(6):340–344

    Article  CAS  PubMed  Google Scholar 

  30. Ma J et al (2014) Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther 348(2):281–292

    Article  PubMed Central  PubMed  Google Scholar 

  31. Metzger BE et al (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358(19):1991–2002

    Article  PubMed  Google Scholar 

  32. Nakhjavani M et al (2010) Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15(6):959–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ozcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    Article  PubMed  Google Scholar 

  34. Padmalayam I (2014) The heat shock response: its role in pathogenesis of type 2 diabetes and its complications, and implications for therapeutic intervention. Discov Med 18(97):29–39

    PubMed  Google Scholar 

  35. Saito FH et al (2013) Heat shock protein production and immunity and altered fetal development in diabetic pregnant rats. Cell Stress Chaperones 18(1):25–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sapra G et al (2014) The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nat Commun 5:5705

    Article  CAS  PubMed  Google Scholar 

  37. Soti C et al (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146(6):769–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stanford KI et al (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123(1):215–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Surwit RS et al (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37(9):1163–1167

    Article  CAS  PubMed  Google Scholar 

  40. Vigh L et al (2007) Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem Sci 32(8):357–363

    Article  CAS  PubMed  Google Scholar 

  41. Vorobyov I, Allen TW (2011) On the role of anionic lipids in charged protein interactions with membranes. Biochim Biophys Acta 1808(6):1673–1683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Hebei Talented Graduate Student Funding. The authors thank Professor Duo Chen and Guangya Wang for the discussion.

Conflict of interest

None of the authors has any potential conflicts of interest associated with this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoheng Xing or Xiaohua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, B., Wang, L., Li, Q. et al. Hsp70 plays an important role in high-fat diet induced gestational hyperglycemia in mice. J Physiol Biochem 71, 649–658 (2015). https://doi.org/10.1007/s13105-015-0430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0430-z

Keywords

Navigation