Skip to main content

Advertisement

Log in

Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to Parkinsonism

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a motor scarcity disorder characterized by the striatal dopamine deficiency owing to the selective degeneration of the nigrostriatal dopaminergic neurons. While oxidative stress is implicated in PD, prolonged exposure to moderate dose of cypermethrin induces Parkinsonism. The study aimed to investigate the status of oxidative stress indicators and antioxidant defence system of the polymorphonuclear leukocytes (PMNs), platelets and plasma to delineate the effect of Parkinsonian dose of cypermethrin in the peripheral blood of rats and its subsequent relevance to Parkinsonism. Nitrite content, lipid peroxidation (LPO) and activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR) and glutathione-S-transferase (GST) were measured in the PMNs, platelets and plasma of control and cypermethrin-treated rats in the presence or absence of a microglial activation inhibitor, minocycline or a dopamine precursor containing the peripheral 3,4-dihydroxyphenylalanine decarboxylase inhibitor, named syndopa, employing the standard procedures. The striatal dopamine was measured to assess the degree of neurodegeneration/neuroprotection. Cypermethrin increased nitrite and LPO in the plasma, platelets and PMNs while it reduced the striatal dopamine content. Catalase and GST activity were increased in the PMNs and platelets; however, it was reduced in the plasma. Conversely, SOD and GR activities were reduced in the PMNs and platelets but increased in the plasma. Minocycline or syndopa reduced the cypermethrin-mediated changes towards normalcy. The results demonstrate that cypermethrin alters the status of oxidative stress indicators and impairs antioxidant defence system of the peripheral blood, which could be effectively salvaged by minocycline or syndopa. The results could be of value for predicting the nigrostriatal toxicity relevant to Parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agil A, Durán R, Barrero F, Morales B, Araúzo M, Alba F, Miranda MT, Prieto I, Ramírez M, Vives F (2006) Plasma lipid peroxidation in sporadic Parkinson’s disease. Role of the L-dopa. J Neurol Sci 240:31–36

  2. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP (2014) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol. doi:10.1007/s12035-014-8696-7

    Google Scholar 

  3. Ahmad I, Shukla S, Kumar A, Singh BK, Patel DK, Pandey HP, Singh C (2010) Maneb and paraquat-induced modulation of toxicant responsive genes in the rat liver: comparison with polymorphonuclear leukocytes. Chem Biol Interact 188:566–579

    Article  CAS  PubMed  Google Scholar 

  4. Baillet A, Vanessa C, Trocmé C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35:1530–1537

    Article  CAS  PubMed  Google Scholar 

  5. Barthwal MK, Srivastava N, Shukla R, Nag D, Seth PK, Srimal RC, Dikshit M (1999) Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson’s disease patients. Acta Neurol Scand 100:300–304

    Article  CAS  PubMed  Google Scholar 

  6. Bet L, Calabrese E, Bava L, Magni E, Rapuzzi S, Pezzoli G, Mariani C (1999) Malondialdheyde production features in platelets of Parkinson and Alzheimer patients and in physiological aging. Neurosci Res Commun 25:1–33

    Article  Google Scholar 

  7. Boyum A (1986) Isolation of granulocytes cell and lymphocytes from human blood. Scand J Lab Invest 97:21–77

    Google Scholar 

  8. Dauer W, Przedborski S (2003) Parkinson's disease: review mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  9. Dési I, Varga L, Dobronyi I, Szklenarik G (1985) Immunotoxicological investigation of the effects of a pesticide: cypermethrin. Arch Toxicol Suppl 8:305–309

    Article  PubMed  Google Scholar 

  10. Dési I, Dobronyi I, Varga L (1986) Immuno-, neuro-, and general toxicologic animal studies on a synthetic pyrethroid: cypermethrin. Ecotoxicol Environ Saf 12:220–232

    Article  PubMed  Google Scholar 

  11. Dixit A, Srivastava G, Verma D, Mishra M, Singh PK, Prakash O, Singh MP (2013) MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson's disease. Biochim Biophys Acta 1832:1227–1240

    Article  CAS  PubMed  Google Scholar 

  12. Facheris M, Beretta S, Ferrarese C (2004) Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: tools for diagnosis and therapy? J Alzheimers Dis 6:177–184

    CAS  PubMed  Google Scholar 

  13. Gupta SP, Patel S, Yadav S, Singh AK, Singh S, Singh MP (2010) Involvement of nitric oxide in maneb- and paraquat-induced Parkinson’s disease phenotype in mouse: is there any link with lipid peroxidation? Neurochem Res 35:1206–1213

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22S

    Article  CAS  PubMed  Google Scholar 

  15. Karen DJ, Li W, Harp PR, Gillette JS, Bloomquist JR (2001) Striatal dopaminergic pathways as a target for the insecticides permethrin and chlorpyrifos. Neurotoxicology 22:811–817

    Article  CAS  PubMed  Google Scholar 

  16. Kou J, Bloomquist JR (2007) Neurotoxicity in murine striatal dopaminergic pathways following long-term application of low doses of permethrin and MPTP. Toxicol Lett 171:154–161

    Article  CAS  PubMed  Google Scholar 

  17. Kou J, Gillette JS, Bloomquist JR (2006) Neurotoxicity in murine striatal dopaminergic pathways following co-application of permethrin, chlorpyrifos, and MPTP. Pest Biochem Physiol 85:68–75

    Article  CAS  Google Scholar 

  18. Kumar A, Patel S, Gupta YK, Singh MP (2006) Involvement of endogenous nitric oxide in myeloperoxidase mediated benzo(a)pyrene induced polymorphonuclear leukocytes injury. Mol Cell Biochem 286:43–51

    Article  CAS  PubMed  Google Scholar 

  19. Liska DJ (1998) The detoxification enzyme systems. Altern Med Rev 3:187–198

    CAS  PubMed  Google Scholar 

  20. Lowry OH, Rosenbrough NJ, Fare AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  21. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) The oxidative damage mitochondrial DNA shows age dependent increase in human brain. Ann Neurol 34:609–616

    Article  CAS  PubMed  Google Scholar 

  22. Miller RL, James-Kracke M, Sun GY, Sun AY (2009) Oxidative and inflammatory pathways in Parkinson's disease. Neurochem Res 34:55–65

    Article  CAS  PubMed  Google Scholar 

  23. Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F (2007) Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229:194–205

    Article  CAS  PubMed  Google Scholar 

  24. Nikam S, Nikam P, Ahaley SK, Sontakke AV (2009) Oxidative stress in Parkinson's disease. Indian J Clin Biochem 24:98–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Raina R, Verma PK, Kusum KV (2009) Effect of repeated dermal application of α-cypermethrin on lipid peroxidation and antioxidant system in rats. Toxicol Int 16:27–30

    Google Scholar 

  26. Ratan RR, Baraban JM (1995) Apoptotic death in an in vitro model of neuronal oxidative stress. Clin Exp Pharmacol Physiol 22:309–310

    Article  CAS  PubMed  Google Scholar 

  27. Sharma A, Kaur P, Kumar B, Prabhakar S, Gill KD (2008) Plasma lipid peroxidation and antioxidant status of Parkinson's disease patients in the Indian population. Parkinsonism Relat Disord 14:52–57

    Article  PubMed  Google Scholar 

  28. Singh BK, Kumar A, Ahmad I, Kumar V, Patel DK, Jain SK, Singh C (2011) Oxidative stress in zinc-induced dopaminergic neurodegeneration: implications of superoxide dismutase and heme oxygenase-1. Free Radic Res 45:1207–1222

    Article  CAS  PubMed  Google Scholar 

  29. Singh AK, Tiwari MN, Dixit A, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2011) Nigrostriatal proteomics of cypermethrin-induced dopaminergic neurodegeneration microglial activation dependent and independent regulations. Toxicol Sci 122:526–538

    Article  CAS  PubMed  Google Scholar 

  30. Singh AK, Tiwari MN, Prakash O, Singh MP (2012) A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol 10:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33:404–415

    Article  CAS  PubMed  Google Scholar 

  32. Tiwari MN, Singh AK, Ahmad I, Upadhyay G, Singh D, Patel DK, Singh C, Prakash O, Singh MP (2010) Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic Res 44:1416–1424

    Article  CAS  PubMed  Google Scholar 

  33. Upadhyay G, Singh AK, Kumar A, Prakash O, Singh MP (2008) Resveratrol modulates pyrogallol-induced changes in hepatic toxicity markers, xenobiotic metabolizing enzymes and oxidative stress. Eur J Pharmacol 596:146–152

    Article  CAS  PubMed  Google Scholar 

  34. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

  35. Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP (2012) Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson's disease pathogenesis. Mol Neurobiol 46:495–512

    Article  CAS  PubMed  Google Scholar 

  36. Yavasoglu A, Sayim F, Uyanikgil Y, Turgut M, Karabay-Yavasoglu NU (2006) The pyrethroid cypermethrin-induced biochemical and histological alterations in rat liver. J Health Sci 52:774–780

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Council of Scientific and Industrial Research (CSIR), New Delhi, India is sincerely acknowledged for the financial support to the study through a network programme [INDEPTH (BSC0111)]. The institutional communication number of this paper is 3206.

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, P., Singh, A., Agrawal, S. et al. Cypermethrin alters the status of oxidative stress in the peripheral blood: relevance to Parkinsonism. J Physiol Biochem 70, 915–924 (2014). https://doi.org/10.1007/s13105-014-0359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0359-7

Keywords

Navigation