Skip to main content
Log in

Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca2+ signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca2+ concentration ([Ca2+]c). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM–1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca2+]c peak response, a faster rate of decay of [Ca2+]c and lower values for the steady state of [Ca2+]c, compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca2+ mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca2+ mobilization induced by 10 pM CCK-8. On the other hand, Ca2+ entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca2+ signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

[Ca2+]c :

Cytosolic free Ca2+ concentration

CCK-8:

Cholecystokinin octapeptide

EGTA:

Ethylene glycol-bis(2-aminoethylether)-N,N,NN′-tetraacetic acid

ER:

Endoplasmic reticulum

Fura-2/AM:

Fura-2 acetoxymethyl ester

References

  1. Aust S, Jäger W, Kirschner H, Klimpfinger M, Thalhammer T (2008) Pancreatic stellate/myofibroblast cells express G-protein-coupled melatonin receptor 1. Wien Med Wochenschr 158:575–578

    Article  PubMed  Google Scholar 

  2. Bähr I, Mühlbauer E, Albrecht E, Peschke E (2012) Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res 53:390–398

    Article  PubMed  Google Scholar 

  3. Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  4. Çöl C, Dınler K, Hasdemır O, Büyükaşik O, Firat T, Kükner A (2010) Evaluation of the effects of melatonin administration intraperitoneally on rats with acute pancreatitis induced by ductal ligation. Turk J Gastroenterol 21:433–438

    PubMed  Google Scholar 

  5. Cuesta S, Kireev R, García C, Forman K, Escames G, Vara E, Tresguerres JA (2011) Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mech Ageing Dev 132:573–582

    Article  PubMed  CAS  Google Scholar 

  6. Del Castillo-Vaquero A, Salido GM, González A (2010) Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 49:256–263

    Article  PubMed  Google Scholar 

  7. Fernández-Sánchez M, del Castillo-Vaquero A, Salido GM, González A (2009) Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells. BMC Cell Biol 10:77

    Article  PubMed  Google Scholar 

  8. González A, Camello PJ, Pariente JA, Salido GM (1997) Free cytosolic calcium levels modify intracellular pH in rat pancreatic acini. Biochem Biophys Res Commun 230:652–656

    Article  PubMed  Google Scholar 

  9. González A, del Castillo-Vaquero A, Miró-Morán A, Tapia JA, Salido GM (2011) Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 50:250–560

    Article  PubMed  Google Scholar 

  10. González A, Salido GM (2010) Participation of mitochondria in calcium signalling in the exocrine pancreas. J Physiol Biochem 57:331–339

    Article  Google Scholar 

  11. González A, Schmid A, Sternfeld L, Krause E, Salido GM, Schulz I (1999) Cholecystokinin-evoked Ca2+ waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A2, phospholipase D, and protein kinase C. Biochem Biophys Res Commun 261:726–733

    Article  PubMed  Google Scholar 

  12. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatily improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  13. Gülben K, Ozdemir H, Berberoğlu U, Mersin H, Yrkin F, Cakýr E, Aksaray S (2010) Melatonin modulates the severity of taurocholate-induced acute pancreatitis in the rat. Dig Dis Sci 55:941–946

    Article  PubMed  Google Scholar 

  14. Habara Y, Kanno T (1994) Stimulus-secretion coupling and Ca2+ dynamics in pancreatic acinar cells. Gen Pharmacol 25:843–850

    Article  PubMed  CAS  Google Scholar 

  15. Huai J, Shao Y, Sun X, Jin Y, Wu J, Huang Z (2012) Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatology 12:257–263

    Article  PubMed  CAS  Google Scholar 

  16. Jaworek J (2006) Ghrelin and melatonin in the regulation of pancreatic exocrine secretion and maintaining of integrity. J Physiol Pharmacol 57:83–96

    PubMed  Google Scholar 

  17. Jaworek J, Nawrot K, Konturek SJ, Leja-Szpak A, Thor P, Pawlik WW (2004) Melatonin and its precursor, L-tryptophan: influence on pancreatic amylase secretion in vivo and in vitro. J Pineal Res 36:155–164

    Article  PubMed  CAS  Google Scholar 

  18. Jaworek J, Nawrot-Porabka K, Leja-Szpak A, Bonior J, Szklarczyk J, Kot M, Konturek SJ, Pawlik WW (2007) Melatonin as modulator of pancreatic enzyme secretion and pancreatoprotector. J Physiol Pharmacol 58:65–80

    PubMed  Google Scholar 

  19. Jaworek J, Nawrot-Porabka K, Leja-Szpak A, Konturek SJ (2010) Brain-gut axis in the modulation of pancreatic enzyme secretion. J Physiol Pharmacol 61:523–531

    PubMed  CAS  Google Scholar 

  20. Jaworek J, Leja-Szpak A, Bonior J, Nawrot K, Tomaszewska R, Stachura J, Sendur R, Pawlik W, Brzozowski T, Konturek SJ (2003) Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J Pineal Res 34:40–52

    Article  PubMed  CAS  Google Scholar 

  21. Jaworek J, Zwirska-Korczala K, Szklarczyk J, Nawrot-Porąbka K, Leja-Szpak A, Jaworek AK, Tomaszewska R (2010) Pinealectomy aggravates acute pancreatitis in the rat. Pharmacol Rep 62:864–873

    PubMed  CAS  Google Scholar 

  22. Jensen RT, Lemp GF, Gardner JD (1982) Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem 257:5554–5559

    PubMed  CAS  Google Scholar 

  23. Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ (2010) Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49:248–255

    Article  PubMed  CAS  Google Scholar 

  24. Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, Muñoz-Castañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C, Muntané J (2006) Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res 40:195–203

    Article  PubMed  Google Scholar 

  25. Putney JW (1988) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  Google Scholar 

  26. Qi W, Tan DX, Reiter RJ, Kim SJ, Manchester LC, Cabrera J, Sainz RM, Mayo JC (1999) Melatonin reduces lipid peroxidation and tissue edema in cerulein-induced acute pancreatitis in rats. Dig Dis Sci 44:2257–2262

    Article  PubMed  CAS  Google Scholar 

  27. Rivera-Barreno R, del Castillo-Vaquero A, Salido GM, González A (2010) Effect of cinnamtannin B-1 on cholecystokinin-8-evoked responses in mouse pancreatic acinar cells. Clin Exp Pharmacol Physiol 37:980–988

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz-Rabelo J, Vázquez R, Arjona A, Perea D, Montilla P, Túnez I, Muntané J, Padillo J (2011) Improvement of capecitabine antitumoral activity by melatonin in pancreatic cancer. Pancreas 40:410–414

    Article  PubMed  CAS  Google Scholar 

  29. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43

    Article  PubMed  CAS  Google Scholar 

  30. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate. Nature 306:67–69

    Article  PubMed  CAS  Google Scholar 

  31. Stumpf I, Mühlbauer E, Peschke E (2008) Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. J Pineal Res 45:318–327

    Article  PubMed  CAS  Google Scholar 

  32. Thomas RP, Hellmich MR, Townsend CM Jr, Evers BM (2003) Role of gastrointestinal hormones in the proliferation of normal and neoplastic tissues. Endocr Rev 24:571–599

    Article  PubMed  CAS  Google Scholar 

  33. Williams JA (2006) Regulation of pancreatic acinar cell function. Curr Opin Gastroenterol 22:498–504

    Article  PubMed  Google Scholar 

  34. Williams JA (2010) Regulation of acinar cell function in the pancreas. Curr Opin Gastroenterol 26:478–483

    Article  PubMed  Google Scholar 

  35. Williams JA, Burnham DB, Hootman SR (1989) The gastrointestinal system. Salivary, gastric, pancreatic and hepatobiliary secretion. In: Schultz SG, Forte JG, Rauner BB (eds) Handbook of physiology, Vol. III, Section 6. American Physiological Society, Bethesda, pp 419–441

    Google Scholar 

  36. Yule DI (2010) Pancreatic acinar cells: molecular insight from studies of signal-transduction using transgenic animals. Int J Biochem Cell Biol 42:1757–1761

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors declare that there is no conflict of interest. This work was supported by Junta de Extremadura-FEDER (GR10010). Patricia Santofimia-Castaño was granted a fellowship from Junta de Extremadura (Consejería de Economía, Comercio e Innovación) and European Social Fund. The authors would like to thank Mrs. Mercedes Gomez Blázquez for her excellent technical support.

Author contributions

Patricia Santofimia-Castaño performed data acquisition and analysis. Deborah Clea Ruy is responsible for acquisition of data. Ginés M. Salido performed data interpretation and critical revision of the manuscript. Antonio González is responsible for concept/design of the research, data analysis/interpretation, drafting and approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santofimia-Castaño, P., Ruy, D.C., Salido, G.M. et al. Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells. J Physiol Biochem 69, 897–908 (2013). https://doi.org/10.1007/s13105-013-0267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0267-2

Keywords

Navigation