Skip to main content
Log in

Myocardial Na+/H+ exchanger-1 (NHE1) content is decreased by exercise training

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effect of exercise training on myocardial Na+/H+ exchanger-1 (NHE1) protein expression was examined. Adult female Sprague–Dawley rats were randomly divided into sedentary (S; n = 8) and exercised (E; n = 9) groups. Twenty-four hours after the last exercise bout, hearts were weighed and connected to an isolated perfused working heart apparatus for evaluation of cardiac functional performance. Heart weight and heart weight/body weight from E rats was significantly increased by 7.1 and 7.2 % (P < 0.05), respectively, compared with S hearts. The E hearts displayed 15 % greater cardiac output and 35 % external cardiac work compared with the S group at both low and high workloads (P < 0.05 for both parameters). Left ventricular tissue from the same hearts was homogenized and NHE1 and Na+/Ca2+ exchanger (NCX) content determined by Western blotting. E hearts had a 38 % (P < 0.001) reduction in NHE1 content related to S hearts, and there was no difference in NCX content between groups. Cytochrome c oxidase activity in plantaris increased by 100 % (P < 0.05) and was assessed as a marker of mitochondria content and to verify training status. Our data indicate that exercise training at an intensity that results in cardiac hypertrophy and improved performance is accompanied by decreased NHE1 content in heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akram S, Teong HF, Fliegel L, Pervaiz S, Clement MV (2006) Reactive oxygen species-mediated regulation of the Na+–H+ exchanger 1 gene expression connects intracellular redox status with cells’ sensitivity to death triggers. Cell Death Differ 13:628–641

    Article  PubMed  CAS  Google Scholar 

  2. Aldakkak M, Stowe DF, Heisner JS, Spence M, Camara AK (2008) Enhanced Na+/H+ exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. J Cardiovasc Pharmacol 52:236–244

    Article  PubMed  CAS  Google Scholar 

  3. Brown DA, Moore RL (2007) Perspectives in innate and acquired cardioprotection: cardioprotection acquired through exercise. J Appl Physiol 103:1894–1899

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Chen CX, Gan XT, Beier N, Scholz W, Karmazyn M (2004) Inhibition and reversal of myocardial infarction-induced hypertrophy and heart failure by NHE-1 inhibition. Am J Physiol Heart Circ Physiol 286:H381–H387

    Article  PubMed  CAS  Google Scholar 

  5. Cingolani HE, Ennis IL (2007) Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100

    Article  PubMed  Google Scholar 

  6. Cingolani HE, Rebolledo OR, Portiansky EL, Perez NG, Camilion de Hurtado MC (2003) Regression of hypertensive myocardial fibrosis by Na(+)/H(+) exchange inhibition. Hypertension 41:373–377

    Article  PubMed  CAS  Google Scholar 

  7. Cohn JN, Bristow MR, Chien KR, Colucci WS, Frazier OH, Leinwand LA, Lorell BH, Moss AJ, Sonnenblick EH, Walsh RA, Mockrin SC, Reinlib L (1997) Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on Heart Failure Research. Circulation 95:766–770

    Article  PubMed  CAS  Google Scholar 

  8. Cooper TG (1977) The tools of biochemistry. Wiley, New York

    Google Scholar 

  9. Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, Camilion de Hurtado MC, Cingolani HE (2003) Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension 41:1324–1329

    Article  PubMed  CAS  Google Scholar 

  10. Fagard RH (1997) Impact of different sports and training on cardiac structure and function. Cardiol Clin 15:397–412

    Article  PubMed  CAS  Google Scholar 

  11. Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE, Ennis IL (2009) Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension 53:708–714

    Article  PubMed  CAS  Google Scholar 

  12. Harris MB, Starnes JW (2001) Effects of body temperature during exercise training on myocardial adaptations. Am J Physiol Heart Circ Physiol 280:H2271–H2280

    PubMed  CAS  Google Scholar 

  13. Haworth RS, McCann C, Snabaitis AK, Roberts NA, Avkiran M (2003) Stimulation of the plasma membrane Na+/H+ exchanger NHE1 by sustained intracellular acidosis. Evidence for a novel mechanism mediated by the ERK pathway. J Biol Chem 278:31676–31684

    Article  PubMed  CAS  Google Scholar 

  14. Iaia FM, Thomassen M, Kolding H, Gunnarsson T, Wendell J, Rostgaard T, Nordsborg N, Krustrup P, Nybo L, Hellsten Y, Bangsbo J (2008) Reduced volume but increased training intensity elevates muscle Na+–K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol 294:R966–R974

    Article  PubMed  CAS  Google Scholar 

  15. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Kasuya Y, Miyauchi T (2006) Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise. J Appl Physiol 101:151–163

    Article  PubMed  CAS  Google Scholar 

  16. Imahashi K, Mraiche F, Steenbergen C, Murphy E, Fliegel L (2007) Overexpression of the Na+/H+ exchanger and ischemia-reperfusion injury in the myocardium. Am J Physiol Heart Circ Physiol 292:H2237–H2247

    Article  PubMed  CAS  Google Scholar 

  17. Javadov S, Baetz D, Rajapurohitam V, Zeidan A, Kirshenbaum LA, Karmazyn M (2006) Antihypertrophic effect of Na+/H+ exchanger isoform 1 inhibition is mediated by reduced mitogen-activated protein kinase activation secondary to improved mitochondrial integrity and decreased generation of mitochondrial-derived reactive oxygen species. J Pharmacol Exp Ther 317:1036–1043

    Article  PubMed  CAS  Google Scholar 

  18. Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG, Karmazyn M (2008) NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res 77:416–424

    Article  PubMed  CAS  Google Scholar 

  19. Javadov S, Purdham DM, Zeidan A, Karmazyn M (2006) NHE-1 inhibition improves cardiac mitochondrial function through regulation of mitochondrial biogenesis during postinfarction remodeling. Am J Physiol Heart Circ Physiol 291:H1722–H1730

    Article  PubMed  CAS  Google Scholar 

  20. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421

    PubMed  CAS  Google Scholar 

  21. Juel C (2000) Expression of the Na(+)/H(+) exchanger isoform NHE1 in rat skeletal muscle and effect of training. Acta Physiol Scand 170:59–63

    Article  PubMed  CAS  Google Scholar 

  22. Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J (2004) Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab 286:E245–E251

    Article  PubMed  CAS  Google Scholar 

  23. Kilic A, Rajapurohitam V, Sandberg SM, Zeidan A, Hunter JC, Said Faruq N, Lee CY, Burnett JC Jr, Karmazyn M (2010) A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway. Cardiovasc Res 88:434–442

    Article  PubMed  CAS  Google Scholar 

  24. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, O’Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613

    Article  PubMed  CAS  Google Scholar 

  25. Mace LC, Palmer BM, Brown DA, Jew KN, Lynch JM, Glunt JM, Parsons TA, Cheung JY, Moore RL (2003) Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol 95:1994–2003

    PubMed  CAS  Google Scholar 

  26. Mandroukas A, Metaxas TI, Heller J, Vamvakoudis E, Christoulas K, Riganas CS, Sendelides T, Stefanidis P, Kotoglou K, Karamouzis I, Mandroukas K (2011) The effect of different exercise-testing protocols on atrial natriuretic peptide. Clin Physiol Funct Imaging 31:5–10

    Article  PubMed  Google Scholar 

  27. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J, Riggi L, Kang PM, Izumo S (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem 279:4782–4793

    Article  PubMed  CAS  Google Scholar 

  28. Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasche P, Myers ML, Nicolau J, Simoons M, Thulin L, Weisel RD (2008) Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann Thorac Surg 85:1261–1270

    Article  PubMed  Google Scholar 

  29. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899

    Article  PubMed  CAS  Google Scholar 

  30. Nelson MJ, Harris MB, Boluyt MO, Hwang HS, Starnes JW (2011) Effect of N-2-mercaptopropionyl glycine on exercise-induced cardiac adaptations. Am J Physiol Regul Integr Comp Physiol 300:R993–R1000

    Article  PubMed  CAS  Google Scholar 

  31. Oliveira RS, Ferreira JC, Gomes ER, Paixao NA, Rolim NP, Medeiros A, Guatimosim S, Brum PC (2009) Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J Physiol 587:3899–3910

    Article  PubMed  CAS  Google Scholar 

  32. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+–K+–2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    Article  PubMed  CAS  Google Scholar 

  33. Powers SK, Quindry JC, Kavazis AN (2008) Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med 44:193–201

    Article  PubMed  CAS  Google Scholar 

  34. Pretorius L, Owen KL, Jennings GL, McMullen JR (2008) Promoting physiological hypertrophy in the failing heart. Clin Exp Pharmacol Physiol 35:438–441

    Article  PubMed  CAS  Google Scholar 

  35. Rumsey WL, Kendrick ZV, Starnes JW (1987) Bioenergetics in the aging Fischer 344 rat: effects of exercise and food restriction. Exp Gerontol 22:271–287

    Article  PubMed  CAS  Google Scholar 

  36. Shibata M, Takeshita D, Obata K, Mitsuyama S, Ito H, Zhang GX, Takaki M (2011) NHE-1 participates in isoproterenol-induced downregulation of SERCA2a and development of cardiac remodeling in rat hearts. Am J Physiol Heart Circ Physiol 301:H2154–H2160

    Article  PubMed  CAS  Google Scholar 

  37. Starnes JW, Barnes BD, Olsen ME (2007) Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction. J Appl Physiol 102:1793–1798

    Article  PubMed  CAS  Google Scholar 

  38. Starnes JW, Wilson DF, Erecinska M (1985) Substrate dependence of metabolic state and coronary flow in perfused rat heart. Am J Physiol 249:H799–H806

    PubMed  CAS  Google Scholar 

  39. Taylor RP, Harris MB, Starnes JW (1999) Acute exercise can improve cardioprotection without increasing heat shock protein content. Am J Physiol 276:H1098–H1102

    PubMed  CAS  Google Scholar 

  40. Wang Y, Meyer JW, Ashraf M, Shull GE (2003) Mice with a null mutation in the NHE1 Na+–H+ exchanger are resistant to cardiac ischemia-reperfusion injury. Circ Res 93:776–782

    Article  PubMed  CAS  Google Scholar 

  41. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118

    Article  PubMed  CAS  Google Scholar 

  42. Wisloff U, Loennechen JP, Falck G, Beisvag V, Currie S, Smith G, Ellingsen O (2001) Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc Res 50:495–508

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Starnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feger, B.J., Starnes, J.W. Myocardial Na+/H+ exchanger-1 (NHE1) content is decreased by exercise training. J Physiol Biochem 69, 305–312 (2013). https://doi.org/10.1007/s13105-012-0214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0214-7

Keywords

Navigation