Skip to main content
Log in

Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: antioxidant role of haptoglobin

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Haptoglobin is a hemoglobin-binding acute-phase protein which possesses anti-inflammatory and antioxidative properties. In this study, we investigated changes in protein expression of rat haptoglobin under diabetes-related inflammatory and oxidative stress conditions induced by an i.p. injection of streptozotocin. The progress of diabetes during an 8-week follow-up period was associated with the increased presence of haptoglobin in the serum and in the liver. This increase was most prominent during the first 2 weeks after which it started to decline. Temporary changes in haptoglobin expression strongly correlated with the serum levels of TNF-α and IL-6. Lower haptoglobin expression at the fourth week and thereafter correlated with a decrease in TNF-α concentration and changes in the TNF-α/IL-6 ratio. Based on the decrease of GSH/GSSG ratio and antioxidant enzyme activities in the liver until the end of fourth week, it was concluded that the liver was exposed to oxidative stress and injury which in the presence of the abovementioned inflammatory mediators lead to different haptoglobin expression profiles at different stages of diabetes. An inverse correlation was observed between the haptoglobin and free iron serum levels in diabetic rats. The higher levels of haptoglobin during the first 2 weeks were accompanied by a lower level of free iron. In view of the established function of haptoglobin, we discuss its possible role in decreasing oxidative stress during the early stage of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP (2005) Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res 96:435–441

    Article  PubMed  CAS  Google Scholar 

  2. Asleh R, Marsh S, Shilkrut M, Binah O, Guetta J, Lejbkowicz F, Enav B, Shehadeh N, Kanter Y, Lache O, Cohen O, Levy NS, Levy AP (2003) Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res 92:1193–1200

    Article  PubMed  CAS  Google Scholar 

  3. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 123–132

    Google Scholar 

  4. Baumann H, Prowse KR, Marinković S, Won K-A, Jahreis GP (1989) Stimulation of hepatic acute phase response by cytokines and glucocorticoids. Ann N Y Acad Sci 557:280–295

    Article  PubMed  CAS  Google Scholar 

  5. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism: a manual of biochemical methods. Grune and Stratton, New York, pp 105–106

    Google Scholar 

  6. Courtoy PJ, Lombart C, Feldmann G, Moguilevsky N, Rogier E (1981) Synchronous increase of four acute phase proteins synthesized by the same hepatocytes during the inflammatory reaction: a combined biochemical and morphologic kinetics study in the rat. Lab Invest 44:105–115

    PubMed  CAS  Google Scholar 

  7. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383

    Article  PubMed  CAS  Google Scholar 

  8. Cussimanio BL, Booth AA, Todd P, Hudson BG, Khalifah RG (2003) Unusual susceptibility of heme proteins to damage by glucose during non-enzymatic glycation. Biophys Chem 105:743–755

    Article  PubMed  CAS  Google Scholar 

  9. Delanghe JR, Langlois MR, Boelaert JR, van Acker J, van Wanzeele F, van der Groen G, Hemmer R, Verhofstede C, De Buyzere M, De Bacquer D, Arendt V, Plum J (1998) Haptoglobin polymorphism, iron metabolism and mortality in HIV infection. AIDS 12:1027–1032

    Article  PubMed  CAS  Google Scholar 

  10. Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK (2006) Serum IL-1β, IL-2 and IL-6 in insulin-dependent diabetic children. Mediators Inflamm 2006:1–6

    Article  Google Scholar 

  11. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D (2002) Inflammatory cytokine concentrations are acutely increased by hyperglicemia in humans. Role of oxidative stress. Circulation 106:2067–2072

    Article  PubMed  CAS  Google Scholar 

  12. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. New Engl J Med 340:448–454

    Article  PubMed  CAS  Google Scholar 

  13. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  14. Hamdena K, Carreaub S, Elfeki A (2009) Inhibitory effects of Zinc on hyperglycaemia and metabolic disorders in the liver of alloxan-induced diabetic rats. Asian Biomed 3:745–750

    Google Scholar 

  15. Hanley JM, Haugen TH, Health EC (1983) Biosynthesis and processing of rat haptoglobin. J Biol Chem 258:7858–7869

    PubMed  CAS  Google Scholar 

  16. Herrman CE, Sanders RA, Klaunig JE, Schwarz LR, Watkins JB (1999) Decreased apoptosis as a mechanism for hepatomegaly in streptozotocin-induced diabetic rats. Toxicol Sci 50:146–151

    Article  PubMed  CAS  Google Scholar 

  17. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J (1998) Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. J Clin Sci 94:623–632

    CAS  Google Scholar 

  18. Kruger JA, Yang C, Tam WS, Hinerfeld D, Evans EJ, Green MK, Leszyk J, Yang K, Guberski LD, Mordes PJ, Greiner LD, Rossini AA, Bortell R (2010) Haptoglobin as an early serum biomarker of virus-induced autoimmune type 1 diabetes in biobreeding diabetes resistant and LEW1.WR1 rats. Exp Biol Med 235:1328–1337

    Article  CAS  Google Scholar 

  19. Laight DW, Carrier MJ, Anggard EE (1999) Endothelial cell dysfunction and the pathogenesis of diabetic macroangiopathy. Diabetes Metab Res Rev 15:274–282

    Article  PubMed  CAS  Google Scholar 

  20. Leclercq IA, Morais ADS, Schroyen B, Hul NV, Geerts A (2007) Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepat 47:142–156

    Article  CAS  Google Scholar 

  21. Lenk SE, Bhat D, Blakeney W, Dunn WA Jr (1992) Effects of streptozotocin-induced diabetes on rough endoplasmic reticulum and lysosomes of rat liver. Am J Physiol 263:856–862

    Google Scholar 

  22. Lim SK, Kim H, bin Ali A, Lim YK, Wang Y, Chong SM, Costantini F, Baumman H (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870–1877

    PubMed  CAS  Google Scholar 

  23. Loven D, Schedl H, Wilson H, Diekus M (1986) Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozotocin induced diabetes. Diabetes 35:503–507

    Article  PubMed  CAS  Google Scholar 

  24. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  25. McMillan DE (1989) Increased levels of acute-phase serum proteins in diabetes. Metabolism 38:1042–1046

    Article  PubMed  CAS  Google Scholar 

  26. Melamed-Frank M, Lache O, Enav BI, Szafranek T, Levy NS, Ricklis RM, Levy AP (2001) Structure-function analysis of the antioxidant properties of haptoglobin. Blood 98:3693–3698

    Article  PubMed  CAS  Google Scholar 

  27. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  28. Moreira LRS, Miranda-Virela AL, Silva ICR, Akimoto AK, Klautau-Guimarӓes MN, Grisolia CK (2009) Antioxidant effect of haptoglobin phenotypes against DNA damage induced by hydrogen peroxide in human leukocytes. Gen Mol Res 8:284–290

    Article  CAS  Google Scholar 

  29. Nepomnyashchikh GI, Pavlenko OA, Aidagulova SV, Nepomnyashchikh DL (2001) Ultrastructural analysis of liver biopsy specimens in diabetes mellitus associated with chronic opisthorchiasis. Bull Exp Biol Med 132:1190–1194

    Article  PubMed  CAS  Google Scholar 

  30. Noorafshan A, Esmail-Zadeh B, Bahmanpour S, Poost-Pasand A (2005) Early stereological changes in liver of Sprague–Dawley rats after streptozotocin injection. Indian J Gastroenterol 24:104–107

    PubMed  Google Scholar 

  31. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  32. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    Article  PubMed  CAS  Google Scholar 

  33. Pickup JC, Chusney GD, Thomas SM, Burt D (2000) Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci 67:291–300

    Article  PubMed  CAS  Google Scholar 

  34. Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59:365–373

    Article  PubMed  CAS  Google Scholar 

  35. Rekna N, Balaji R, Deecaraman M (2008) Effect of aqueous extract of Syzygium cumini pulp on antioxidant defense system in streptozotocin induced diabetic rats. IJPT 7:137–145

    Google Scholar 

  36. Rossi R, Dalle-Donne I, Milzani A, Giustarini D (2006) Oxidized forms of glutathione in peripheral blood as biomarkers of oxidative stress. Clin Chem 52:1406–1414

    Article  PubMed  CAS  Google Scholar 

  37. Roy M, Sen S, Chakraborti AS (2008) Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci 82:1102–1110

    Article  PubMed  CAS  Google Scholar 

  38. Swaminathan S, Fonseca VA, Alam MG, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933

    Article  PubMed  CAS  Google Scholar 

  39. Vadas P, Grouix B, Stefanski E, Wloch M, Pruzanski W, Schroeder J, Gauldie J (1997) Coordinate expression of group II phospholipase A2 and the acute-phase protein haptoglobin (HP) and α1-anti-chymotrypsin (ACH) by HepG2 cells. Clin Exp Immunol 108:175–180

    Article  PubMed  CAS  Google Scholar 

  40. Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49:642–652

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Serbian Ministry of Education and Science, grant no. 173020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigorov Ilijana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelena, A., Mirjana, M., Desanka, B. et al. Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: antioxidant role of haptoglobin. J Physiol Biochem 69, 45–58 (2013). https://doi.org/10.1007/s13105-012-0186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0186-7

Keywords

Navigation