Skip to main content
Log in

Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria have been shown to be impaired in insulin resistance-related diseases but have not been extensively studied during the first steps of adipose cell development. This study was designed to determine the sequence of changes of the mitochondrial network and function during the first days of adipogenesis. 3T3-L1 preadipocytes were differentiated into adipocytes without using glitazone compounds. At days 0, 3, 6, 9, and 12, mitochondrial network imaging, mitochondrial oxygen consumption, membrane potential, and oxidative phosphorylation efficiency were assessed in permeabilized cells. Gene and protein expressions related to fatty acid metabolism and mitochondrial network were also determined. Compared to preadipocytes (day 0), new adipocytes (days 6 and 9) displayed profound changes of their mitochondrial network that underwent fragmentation and redistribution around lipid droplets. Drp1 and mitofusin 2 displayed a progressive increase in their gene expression and protein content during the first 9 days of differentiation. In parallel with the mitochondrial network redistribution, mitochondria switched to uncoupled respiration with a tendency towards decreased membrane potential, with no variation of mtTFA and NRF1 gene expression. The expression of PGC1α and NRF2 genes and genes involved in lipid oxidation (UCP2, CD36, and CPT1) was increased. Reactive oxygen species (ROS) production displayed a nadir at day 6 with a concomitant increase in antioxidant enzyme gene expression. This 3T3-L1-based in vitro model of adipogenesis showed that mitochondria adapted to the increased number of lipid droplets by network redistribution and uncoupling respiration. The timing and regulation of lipid oxidation-associated ROS production appeared to play an important role in these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, Henrion D, Martinez MC, Andriantsitohaina R (2007) Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 21:2735–2741

    Article  PubMed  CAS  Google Scholar 

  2. Ahima RS (2006) Adipose tissue as an endocrine organ. Obesity 5(14):242S–249S

    Article  Google Scholar 

  3. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26:435–439

    Article  PubMed  CAS  Google Scholar 

  4. Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399

    Article  PubMed  CAS  Google Scholar 

  5. Carriere A, Fernandez Y, Rigoulet M, Penicaud L, Casteilla L (2003) Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 550:163–167

    Article  PubMed  CAS  Google Scholar 

  6. Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L, Casteilla L (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 279:40462–40469

    Article  PubMed  CAS  Google Scholar 

  7. Chevillotte E, Giralt M, Miroux B, Ricquier D, Villarroya F (2007) Uncoupling protein-2 controls adiponectin gene expression in adipose tissue through the modulation of reactive oxygen species production. Diabetes 56:1042–1050

    Article  PubMed  CAS  Google Scholar 

  8. Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, Han SS, Yoon YS, Yon G, Choi KM, Ko YG (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791

    Article  PubMed  CAS  Google Scholar 

  9. Dahlman I, Forsgren M, Sjogren A, Nordstrom EA, Kaaman M, Naslund E, Attersand A, Arner P (2006) Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-alpha. Diabetes 55:1792–1799

    Article  PubMed  CAS  Google Scholar 

  10. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    Article  PubMed  CAS  Google Scholar 

  11. Dumas JF, Simard G, Flamment M, Ducluzeau PH, Ritz P (2009) Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans? Diabetes Metab 35:159–167

    Article  PubMed  CAS  Google Scholar 

  12. Feve B (2005) Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab 19:483–499

    Article  PubMed  CAS  Google Scholar 

  13. Gregor MF, Hotamisligil GS (2007) Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48:1905–1914

    Article  PubMed  CAS  Google Scholar 

  14. Gummersbach C, Hemmrich K, Kroncke KD, Suschek CV, Fehsel K, Pallua N (2009) New aspects of adipogenesis: radicals and oxidative stress. Differentiation 77:115–120

    Article  PubMed  CAS  Google Scholar 

  15. Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473

    Article  PubMed  CAS  Google Scholar 

  16. Kim A, Murphy MP, Oberley TD (2005) Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: a proposed adaptive response to mitochondrial redox imbalance. Free Radic Biol Med 38:644–654

    Article  PubMed  CAS  Google Scholar 

  17. Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Article  PubMed  CAS  Google Scholar 

  18. Kita T, Nishida H, Shibata H, Niimi S, Higuti T, Arakaki N (2009) Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation. J Biochem 146:787–796

    Article  PubMed  CAS  Google Scholar 

  19. Koh EH, Park JY, Park HS, Jeon MJ, Ryu JW, Kim M, Kim SY, Kim MS, Kim SW, Park IS, Youn JH, Lee KU (2007) Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56:2973–2981

    Article  PubMed  CAS  Google Scholar 

  20. Lee YS, Kim AY, Choi JW, Kim M, Yasue S, Son HJ, Masuzaki H, Park KS, Kim JB (2008) Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol Endocrinol 22:2176–2189

    Article  PubMed  CAS  Google Scholar 

  21. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  PubMed  CAS  Google Scholar 

  22. Luo GF, Yu TY, Wen X, Li Y, Yang GS (2008) Alteration of mitochondrial oxidative capacity during porcine preadipocyte differentiation and in response to leptin. Mol Cell Biochem 307:83–91

    Article  PubMed  CAS  Google Scholar 

  23. Murholm M, Dixen K, Qvortrup K, Hansen LH, Amri EZ, Madsen L, Barbatelli G, Quistorff B, Hansen JB (2009) Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment. PLoS ONE 4:e8458

    Article  PubMed  Google Scholar 

  24. Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862

    Article  PubMed  CAS  Google Scholar 

  25. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  PubMed  CAS  Google Scholar 

  26. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  PubMed  CAS  Google Scholar 

  27. Roussel D, Dumas JF, Augeraud A, Douay O, Foussard F, Malthiery Y, Simard G, Ritz P (2003) Dexamethasone treatment specifically increases the basal proton conductance of rat liver mitochondria. FEBS Lett 541:75–79

    Article  PubMed  CAS  Google Scholar 

  28. Seifert EL, Estey C, Xuan JY, Harper ME (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758

    Article  PubMed  CAS  Google Scholar 

  29. Semple RK, Crowley VC, Sewter CP, Maudes M, Christodoulides C, Considine RV, Vidal-Puig A, O’Rahilly S (2004) Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord 28:176–179

    Article  PubMed  CAS  Google Scholar 

  30. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler TW (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197

    Article  PubMed  CAS  Google Scholar 

  31. Skulachev VP (1999) Anion carriers in fatty acid-mediated physiological uncoupling. J Bioenerg Biomembr 31:431–445

    Article  PubMed  CAS  Google Scholar 

  32. Summermatter S, Marcelino H, Arsenijevic D, Buchala A, Aprikian O, Assimacopoulos-Jeannet F, Seydoux J, Montani JP, Solinas G, Dulloo AG (2009) Adipose tissue plasticity during catch-up fat driven by thrifty metabolism: relevance for muscle-adipose glucose redistribution during catch-up growth. Diabetes 58:2228–2237

    Article  PubMed  CAS  Google Scholar 

  33. Tejerina S, De Pauw VS, Houbion A, Renard P, De Longueville F, Raes M, Arnould T (2009) Mild mitochondrial uncoupling induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-independent mechanism, whereas TNFalpha-induced de-differentiation is PPARgamma dependent. J Cell Sci 122:145–155

    Article  PubMed  CAS  Google Scholar 

  34. van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non-adipose tissue, lipotoxicity. Physiol Behav 94:231–241

    Article  PubMed  Google Scholar 

  35. Vankoningsloo S, Piens M, Lecocq C, Gilson A, De Pauw A, Renard P, Demazy C, Houbion A, Raes M, Arnould T (2005) Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid beta-oxidation and glucose. J Lipid Res 46:1133–1149

    Article  PubMed  CAS  Google Scholar 

  36. Virtue S, Vidal-Puig A (2009) Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 1801:338–349

    Google Scholar 

  37. Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, Nicoloro S, Czech M, Corvera S (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094

    Article  PubMed  CAS  Google Scholar 

  38. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Ducluzeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducluzeau, PH., Priou, M., Weitheimer, M. et al. Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J Physiol Biochem 67, 285–296 (2011). https://doi.org/10.1007/s13105-011-0074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0074-6

Keywords

Navigation