Skip to main content
Log in

Fractional-Grey Wolf optimizer-based kernel weighted regression model for multi-view face video super resolution

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Due to the advancement of the intelligent surveillance system in recent days, security and protection cameras are installed even in small shops, but the qualities of the image captured by surveillance cameras are low. The technique used for reconstruction of the high-resolution images from observed low-resolution image is called as super-resolution techniques. In order to alleviate the resolution problem and to provide desired information, fractional-Grey Wolf optimizer-based kernel weighted regression model is developed in this paper for multi-view face video super-resolution. Here, a new optimal kernel weight matrix for the interpolation of the super-resolution image is generated using the proposed FGWO algorithm, which is newly developed by integrating the GWO with fractional calculus. The experimentation of the proposed system is carried over UCSD face video databases, and the performance results are analyzed using SDME, PSNR, and SSIM with various existing techniques. The experimental results demonstrated that the proposed method improved the performance of super-resolution by achieving the maximum PSNR, SSIM and SDME value of 49.5909, 0.99 and 87.51 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qu S, Hu R, Chen S, Chen L, Zhang M (2014) Robust face super-resolution via position-patch neighborhood preserving. In: Proceedings of IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp 1–5

  2. Yoshida T, Takahashi T, Deguchi D, Ide I, Murase H (2012) Robust face super-resolution using free-form deformations for low-quality surveillance video. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp 368–373

  3. Zeng X, Huang H (2012) Super-resolution method for multiview face recognition from a single image per person using nonlinear mappings on coherent features. IEEE Signal Process Lett 19(4):195–198

    Article  Google Scholar 

  4. Tao L, Ruimin H, Zhen H, Yang X, Shang G (2012) Surveillance face super-resolution via shape clustering and subspace learning. Int J Sign Process Image Process Pattern Recogn 5(4):107–116

    Google Scholar 

  5. Linghui L, Junping D, Meiyu L, Nan R, Dan F (2016) Video super-resolution reconstruction based on deep convolutional neural network and spatiotemporal similarity. J China Univer Posts Telecommun 23(5):68–81

    Article  Google Scholar 

  6. Li K, Zhu Y, Yang J, Jiang J (2016) Video super-resolution using an adaptive superpixel-guided auto-regressive model. Pattern Recogn 51:59–71

    Article  Google Scholar 

  7. Izadpanahi S, Demirel H (2013) “Motion block based video super-resolution. Digit Signal Proc 23(5):1451–1462

    Article  MathSciNet  Google Scholar 

  8. Wang X, Lin H, Xu X (2014) Parts-based face super-resolution via non-negative matrix factorization. Comput Electr Eng 40(8):130–141

    Article  Google Scholar 

  9. Huang H, He H, Fan X (2010) Super-resolution of human face image using canonical correlation analysis”. Pattern Recogn 43(7):2532–2543

    Article  MATH  Google Scholar 

  10. Huang H, Wu N (2011) Fast facial image super-resolution via local linear transformations for resource-limited applications. IEEE Trans Circ Syst Video Technol 21(10):1363–1377

    Article  Google Scholar 

  11. Zeng X, Huang H (2015) Locally nonlinear transformation for facial image superresolution. Opt Eng 52(2):027001

    Article  Google Scholar 

  12. Zhang L, Li BL, Xie N, Wang H (2017) CSVE radar: high-range-resolution radar using compressive sensing and virtual expanding technique. IET Radar Sonar Navig 11(6)1002–1010

    Article  Google Scholar 

  13. Zhang JG, Han YH, Tang JH, Hu QH, Jiang JM (2017) Semi-supervised image-to-video adaptation for video action recognition. IEEE Trans Cybern 47(4):960–973

    Article  Google Scholar 

  14. Zhou Y, Kwong S, Gao W, Wang X (2016) A phase congruency based patch evaluator for complexity reduction in multi-dictionary based single-image super-resolution. Inf Sci 367:337–353

    Article  Google Scholar 

  15. Ren C-X, Dai D-Q, Yan H (2012) Coupled Kernel embedding for low-resolution face image recognition. IEEE Trans Image Process 21(8):3770–3783

    Article  MathSciNet  MATH  Google Scholar 

  16. Nasrollahi K, Moeslund TB (2011) Extracting a good quality frontal face image from a low-resolution video sequence. IEEE Trans Circuits Syst Video Technol 21(10):1353–1362

    Article  Google Scholar 

  17. Jian M, Lam KM (2015) Simultaneous hallucination and recognition of low-resolution faces based on singular value decomposition. IEEE Trans Circuits Syst Video Technol 25(11):1761–1772

    Article  Google Scholar 

  18. Yee P, Haykin S (1993) Pattern classification as an ill-posed, inverse problem: a regularization approach. In: Proc IEEE Int Conf Acoustics Speech Signal Processing, vol 1, pp 597–600

  19. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 16(2):349–366

    Article  MathSciNet  Google Scholar 

  20. Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appl 22(2)56–65

    Article  Google Scholar 

  21. Liu C, Sun D (2014) On Bayesian adaptive video super resolution. IEEE Trans Pattern Anal Mach Intell 36(2):346–360

    Article  Google Scholar 

  22. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE computer society conference on Computer Vision and Pattern Recognition, vol 1, pp I-511–I-518

  23. Wang Y-Q (2014) An analysis of the Viola-Jones face detection algorithm. Image Process Line 4:128–148

    Article  Google Scholar 

  24. Papageorgiou C, Oren M, Poggio T (1998) A general framework for object detection. In: Proceedings of International Conference on Computer Vision

  25. Pires ES, Tenreiro Machado JA, de Moura Oliveira PB, Cunha BJ, Mendes L (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1–2):295–301

    Article  MATH  Google Scholar 

  26. SeyedaliMirjalili SM, Mirjalili A, Lewis (2014) Grey Wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  27. Muro C, Escobedo R, Spector L, Coppinger R (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Process 88:192–197

    Article  Google Scholar 

  28. Panetta K, Zhou Y, Agaian S, Jia H (2011) Nonlinear Unsharp masking for mammogram enhancement. IEEE Trans Inf Technol Biomed 15(6):918–928

    Article  Google Scholar 

  29. The UCSD face video database. http://vision.ucsd.edu/datasets/leekc/disk2/VideoDatabase/testing/. Accessed 15 Nov 2016

  30. Yang J, Wright J, Ma Y, Huang T (2008) Image super-resolution as sparse representation of raw image patches. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK

  31. Marquina A, Osher SJ (2008) Image super-resolution by TV-regularization and Bregman iteration. J Sci Comput 37:367–382

    Article  MathSciNet  MATH  Google Scholar 

  32. Dong W, Zhang L, Shi G, Wu X (2011) Image Deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857

    Article  MathSciNet  MATH  Google Scholar 

  33. May V, Keller Y, Sharon N, Shkolnisky Y (2016) An algorithm for improving non-local means operators via low-rank approximation. IEEE Trans Image Process 25(3):1340–1353

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu C, Sun D (2011) A Bayesian approach to adaptive video super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  35. Kappeler A, Yoo S, Dai Q, Katsaggelos AK (2016) Video super-resolution with convolutional neural networks sign in or purchase. IEEE Trans Computat Imaging 2(2):109–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar B. Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, A.B., Usha Rani, N. Fractional-Grey Wolf optimizer-based kernel weighted regression model for multi-view face video super resolution. Int. J. Mach. Learn. & Cyber. 10, 859–877 (2019). https://doi.org/10.1007/s13042-017-0765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0765-6

Keywords

Navigation