Skip to main content
Log in

Concept granular computing systems and their approximation operators

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, three kinds of adjoint extent-intent and intent-extent operators between two complete lattices are constructed. Three new types of concept granular computing systems are then formulated via a quadruple including two complete lattices and the corresponding adjoint operators. It is showed that all the concepts in any of the concept granular computing systems form a complete lattice. Furthermore, based on the four types of concept granular computing systems, we present four types of rough set approximation operators in a formal context which can characterize different aspect of knowledge. Some important properties of the proposed approximation operators are also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belohlavek R, De Baets B, Konecny J (2014) Granularity of attributes in formal concept analysis. Inf Sci 260:149–170

    Article  MathSciNet  MATH  Google Scholar 

  2. Belohlavek R, De Baets B, Outrata J, Vychodil V (2010) Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Trans Fuzzy Syst 18(3):546–557

    Article  Google Scholar 

  3. Formica A (2012) Semantic web search based on rough sets and fuzzy formal concept analysis. Knowl Based Syst 26:40–47

    Article  Google Scholar 

  4. Ganter B, Wille R (1999) Formal concept analysis. Mathematic foundations. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Gediga G, Duntsch I (2002) Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE international conference on data mining, pp 155–162

  6. Greco S, Matarazzo B, Słowiński R (2002) Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur J Oper Res 138:247–259

    Article  MathSciNet  MATH  Google Scholar 

  7. Guan LH, Wang GY (2012) Generalized approximations defined by nonequivalence relations. Inf Sci 193:163–179

    Article  MathSciNet  MATH  Google Scholar 

  8. Kang XP, Li DY, Wang SG, Qu KS (2012) Formal concept analysis based on fuzzy granularity base for different granulations. Fuzzy Sets Syst 203:33–48

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar CA, Srinivas S (2010) Concept lattice reduction using fuzzy K-means clustering. Expert Syst Appl 37:2696–2704

    Article  Google Scholar 

  10. Lai HL, Zhang DX (2009) Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory. Int J Approx Reason 50:695–707

    Article  MathSciNet  MATH  Google Scholar 

  11. Lei YB, Luo MK (2009) Rough concept lattices and domains. Ann Pure Appl Logic 159:333–340

    Article  MathSciNet  MATH  Google Scholar 

  12. Li JH, Mei CL, Xu WH, Qian YH (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467

    Article  MathSciNet  Google Scholar 

  13. Li JH, Ren Y, Mei CL, Qian YH, Yang XB (2015) A comparative study of multigranulation rough sets and concept lattices via rule acquisition. Knowl Based Syst. doi:10.1016/j.knosys.2015.07.024

  14. Liu M, Shao MW, Zhang WX, Wu C (2007) Reduction method for concept lattices based on rough set theory and its application. Computers Math Appl 53(9):1390–1410

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma JM, Zhang WX, Leung Y, Song XX (2007) Granular computing and dual Galois connection. Inf Sci 177(23):5365–5377

    Article  MathSciNet  MATH  Google Scholar 

  16. Medina J (2012) Multi-adjoint property-oriented and object-oriented concept lattices. Inf Sci 190:95–106

    Article  MathSciNet  MATH  Google Scholar 

  17. Medina J, Ojeda-Aciego M (2013) Dual multi-adjoint concept lattices. Inf Sci 225:47–54

    Article  MathSciNet  MATH  Google Scholar 

  18. Pawlak Z (1982) Rough sets. Int J Computer Inf Sci 11:341–356

    Article  MATH  Google Scholar 

  19. Pedrycz W (2014) Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing. Eur J Oper Res 232(1):137–145

    Article  Google Scholar 

  20. Pedrycz W, Bargiela A (2002) Granular computing: a granular signature of data. IEEE Trans Syst Man Cybern Part B Cybern 32(2):212–224

    Article  Google Scholar 

  21. Qian YH, Liang JY, Wu WZ, Dang CY (2011) Information granularity in fuzzy binary GrC model. IEEE Trans Fuzzy Syst 19(2):253–264

    Article  Google Scholar 

  22. Qiu GF, Ma JM, Yang HZ, Zhang WX (2010) A mathematical model for concept granular computing systems. Sci China (Information Sciences) 53(7):1397–1408

    Article  MathSciNet  Google Scholar 

  23. Shao MW, Liu M, Zhang WX (2007) Set approximations in fuzzy formal concept analysis. Fuzzy Set Syst 158:2627–2640

    Article  MathSciNet  MATH  Google Scholar 

  24. Shao MW, Leung Y (2014) Relations between granular reduct and dominance reduct in formal contexts. Knowl Based Syst 65:1–11

    Article  Google Scholar 

  25. Shao MW, Leung Y, Wu WZ (2014) Rule acquisition and complexity reduction in formal decision contexts. Int J Approx Reason 55(1):259–274

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang LD, Liu XD (2008) Concept analysis via rough set and AFS algebra. Inf Sci 178:4125–4137

    Article  MathSciNet  MATH  Google Scholar 

  27. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Reidel, Dordrecht-Boston, pp 445–470

    Chapter  Google Scholar 

  28. Wu Q, Liu ZT (2009) Real formal concept analysis based on grey-rough set theory. Knowl Based Syst 22:38–45

    Article  Google Scholar 

  29. Wei L, Wan Q (2014) Granular transformation and irreducible element judgment theory based on pictorial diagrams. IEEE Trans Cybern. doi:10.1109/TCYB.2014.2371476

  30. Wu WZ, Mi JS, Zhang WX (2003) Generalized fuzzy rough sets. Inf Sci 151:263–282

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu WZ, Leung Y (2011) Theory and applications of granular labelled partitions in multi-scale decision tables. Inf Sci 181:3878–3897

    Article  MATH  Google Scholar 

  32. Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE Trans Knowl Data Eng 21(10):1461–1474

    Article  Google Scholar 

  33. Xu WH, Li WT (2014) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern. doi:10.1109/TCYB.2014.2361772

  34. Yao JT, Vasilakos AV, Pedrycz W (2013) Granular computing: perspectives and challenges. IEEE Trans Cybern 43(6):1977–1989

    Article  Google Scholar 

  35. Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 111(1–4):239–259

    Article  MathSciNet  MATH  Google Scholar 

  36. Yao YY (2004) Concept lattices in rough set theory. In: Proceedings of 2004 annual meeting of the North American fuzzy information processing Society, pp 73–78

  37. Yao YY (2004) A comparative study of formal concept analysis and rough set theory. In: Data analysis, rough sets and current trends in computing, 4th International Conference. Lecture Notes in Computer Science, vol 3066, pp 59–68

  38. Yao YY (2005) Perspectives of granular computing. In: Proceedings of 2005 IEEE International conference on granular computing, vol 1, pp 85–90

  39. Yao YY (2005) A united framework of granular computing. In: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of granular computing. Wiley, New York, pp 401–410

  40. Yao YY (2009) Interpreting concept learning in cognitive informatics and granular computing. IEEE Trans Syst Man Cybern Part B Cybern 39(4):855–866

    Article  Google Scholar 

  41. Yao YY, Zhang LQ (2012) A measurement theory view on the granularity of partitions. Inf Sci 213:1–13

    Article  MathSciNet  MATH  Google Scholar 

  42. Yao YY, Zhang N, Miao DQ, Xu FF (2012) Set-theoretic approaches to granular computing. Fundamenta Informaticae 115(2–3):247–264

    MathSciNet  MATH  Google Scholar 

  43. Zadeh LA (1979) Fuzzy sets and information granularity. In: Advances in fuzzy set theory and applications. NorthHolland, Amsterdam, The Netherlands, pp 3–18

  44. Zhang QH, Xing YK (2010) Formal concept analysis based on granular computing. J Comput Inf Syst 6(7):2287–2296

    Google Scholar 

  45. Zhang WX, Ma JM, Fan SQ (2007) Variable threshold concept lattices. Inf Sci 177(22):4883–4892

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang WX, Yang HZ, Ma JM, Qiu GF (2009) Concept granular computing based on lattice theoretic setting. Stud Comput Intell 182:67–94

    Google Scholar 

  47. Zhang XY, Miao DQ (2014) Quantitative information architecture, granular computing and rough set models in the double-quantitative approximation space of precision and grade. Inf Sci 268:147–168

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu W (2007) Generalized rough sets based on relations. Inf Sci 177(22):4997–5011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very indebted to the anonymous referees for their critical comments and suggestions for the improvement of this paper. This work was supported by the grants from the National Natural Science Foundation of China (Nos. 61173181, 61272021, 61363056,6157332), the National Social Science Foundation of China (No. 14XXW004), the Humanities and Social Science funds Project of Ministry of Education of China (Nos. 11XJJAZH001, 12YJA630019), the Fundamental Research Funds for the Central Universities, the Zhejiang Provincial Nature Science Foundation of China (No. LZ12F03002), and Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province (No. OBDMA201504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wen Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Shao, MW. & Qiu, G. Concept granular computing systems and their approximation operators. Int. J. Mach. Learn. & Cyber. 8, 627–640 (2017). https://doi.org/10.1007/s13042-015-0457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0457-z

Keywords

Navigation