Skip to main content
Log in

A study on the discriminating characteristics of Gabor phase-face and an improved method for face recognition

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, characteristics of different Gabor phase based facial feature representations are studied for the face recognition problem. Experiments show that filter responses acquired from larger scales show higher discriminating ability. Based on this study, following methods are proposed: (1) a faster face recognition method that is forty times faster than the conventional Gabor face representation that can discriminate faces with 91.4 % accuracy, (2) a five times faster method than the conventional representation that showed 95.7 % accuracy, (3) a novel weighted vote of Gabor filters-based face recognition method which showed 99 % accuracy, and (4) an online face authentication system using global and person specific threshold. The tests are performed using a 1200 subject dataset collected from a combination of three databases: FERET, Indian and in-house.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amin M, Yan H (2009) An empirical study on the characteristics of Gabor representations for face recognition. Int J Pattern Recognit Artif Intell 23(3):401–431

    Article  Google Scholar 

  2. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  3. Daugman J (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vis Res 20(10):847–856

    Article  Google Scholar 

  4. Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am 2(7):1160–1169

    Article  Google Scholar 

  5. Daugman J (1988) Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoust Speech Signal Process 36(7):1169–1179

    Article  MATH  Google Scholar 

  6. Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30

    Article  Google Scholar 

  7. Deza M, Deza E (2009) Encyclopedia of distances. Springer, Berlin

    Book  MATH  Google Scholar 

  8. Donato G, Bartlett M, Hager J, Ekman P, Sejnowski T (1999) Classifying facial actions. IEEE Trans Pattern Anal Mach Intell 21(10):974–989

    Article  Google Scholar 

  9. Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images. J Opt Soc Am A 14(8):1724–1733

    Article  Google Scholar 

  10. Field DJ et al (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4(12):2379–2394

    Article  Google Scholar 

  11. Gonzales RC, Woods R (1993) Digital image processing. Addison-Wesley Publishing Company, Reading

  12. Guo Y, Xu Z (2008) Local Gabor phase difference pattern for face recognition. In: IEEE 19th international conference on pattern recognition, pp 1–4

  13. Guo Y, Zhao G, Chen J, Pietikinen M, Xu Z (2009) A new Gabor phase difference pattern for face and ear recognition. Comput Anal Images Patterns 5702:41–49

    Article  Google Scholar 

  14. Han J, Ma KK (2007) Rotation-invariant and scale-invariant Gabor features for texture image retrieval. Image Vis Comput 25(9):1474–1481

    Article  MathSciNet  Google Scholar 

  15. Jain V, Mukherjee A (2002) The Indian face database. http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/

  16. Jensen O, Larsen R (2008) Implementing the Viola–Jones face detection algorithm. Master’s thesis, Technical University of Denmark

  17. Jones J, Palmer L (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233

    Google Scholar 

  18. Kirby M, Sirovich L (1990) Application of the Karhunen–Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  19. Kovesi P (1996) Invariant measures of image features from phase information. PhD thesis, University of Western Australia

  20. Lades M, Vorbruggen J, Buhmann J, Lange J, von der Malsburg C, Wurtz R, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300–311

    Article  Google Scholar 

  21. Lajevardi SM, Lech M (2008) Facial expression recognition from image sequences using optimized feature selection. In: 23rd international conference on image and vision computing New Zealand, 2008. IVCNZ 2008. IEEE, pp 1–6

  22. Lin S, Kung S, Lin L (1997) Face recognition/detection by probabilistic decision-based neural network. IEEE Trans Neural Netw 8(1):114–132

    Article  Google Scholar 

  23. Liu C (2004) Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans Pattern Anal Mach Intell 26(5):572–581

    Article  Google Scholar 

  24. Liu C, Wechsler H (2001) A shape-and texture-based enhanced fisher classifier for face recognition. IEEE Trans Image Process 10(4):598–608

    Article  MATH  Google Scholar 

  25. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  26. Liu C, Wechsler H (2003) Independent component analysis of Gabor features for face recognition. IEEE Trans Neural Netw 14(4):919–928

    Article  Google Scholar 

  27. Lyons M, Budynek J, Akamatsu S (1999) Automatic classification of single facial images. IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362

    Article  Google Scholar 

  28. Lyons M, Budynek J, Plante A, Akamatsu S (2000) Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis. In: Fourth IEEE international conference on automatic face and gesture recognition, pp 202–207

  29. Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11):1297–1300

    Article  MathSciNet  Google Scholar 

  30. Nava R, Escalante-Ramírez B, Cristóbal G (2012) Texture image retrieval based on log-Gabor features. In: Progress in pattern recognition, image analysis, computer vision, and applications. Springer, Berlin, pp 414–421

  31. Nouyed I, Amin MA (2014) Recent advancements in Gabor wavelet-based face recognition, 3rd edn. In: IGI global, chap 25, pp 262–274. Encyclopedia of Information Science and Technology

  32. Nouyed I, Poon B, Amin MA, Yan H (2011a) Face recognition accuracy of Gabor phase representations at different scales and orientations. In: 2011 International conference on machine learning and cybernetics (ICMLC), IEEE, vol 4, pp 1767–1772

  33. Nouyed I, Poon B, Amin MA, Yan H (2011b) Human face recognition using weighted vote of Gabor magnitude filters. In: Proceedings of 2011 international conference on information technology and applications, pp 36–40

  34. Nouyed I, Poon B, Amin MA, Yan H (2013) Facial authentication using Gabor phase feature representations. In: Proceedings of the international multiconference of engineers and computer scientists, vol 1, pp 413–418

  35. Phillips PJ, Rauss P, Der S (1996) FERET (FacE REcognition Technology) recognition algorithm development and test report. Technical report. ARL-TR-995, US Army Research Laboratory

  36. Poon B, Amin MA, Yan H (2009) PCA based face recognition and testing criteria. In: 2009 International conference on machine learning and cybernetics, IEEE, vol 5, pp 2945–2949

  37. Qing L, Shan S, Chen X, Gao W (2006) Face recognition under varying lighting based on the probabilistic model of Gabor phase. Pattern Recognit 3:1139–1142

    Google Scholar 

  38. Samal A, Iyengar P (1992) Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recognit 25(1):65–77

    Article  Google Scholar 

  39. Štruc V, Pavešić N (2009) Phase congruency features for palm-print verification. IET Signal Process 3(4):258–268

    Article  Google Scholar 

  40. Tao D, Li X, Wu X, Maybank S (2007) General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  41. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  42. Vasilescu M, Terzopoulos D (2002) Multilinear analysis of image ensembles: tensorfaces. In: Computer vision, ECCV, pp 447–460

  43. Wiskott L, Fellous J, Kuiger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

  44. Yang M, Kriegman D, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24(1):34–58

    Article  Google Scholar 

  45. Zhang B, Shan S, Chen X, Gao W (2006) Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68

    Article  MathSciNet  Google Scholar 

  46. Zhang B, Zongli W, Bineng Z (2008) Kernel learning of histogram of local Gabor phase patterns for face recognition. EURASIP J Adv Signal Process 2008(1):469109

    Article  MATH  Google Scholar 

  47. Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision, vol 1, pp 786–791

  48. Zhang W, Shan S, Chen X, Gao W (2007) Local Gabor binary patterns based on mutual information for face recognition. Int J Image and Graph 7(4):777–793

    Article  Google Scholar 

  49. Zhang W, Shan S, Qing L, Chen X, Gao W (2009) Are Gabor phases really useless for face recognition? Pattern Anal Appl 12(3):301–307

    Article  MathSciNet  Google Scholar 

  50. Zhao W, Chellappa R, Krishnaswamy A (1998) Discriminant analysis of principal components for face recognition. In: Third IEEE international conference on automatic face and gesture recognition, 1998. Proceedings, pp 336–341

  51. Zhao W, Chellappa R, Phillips P, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv (CSUR) 35(4):399–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Poon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouyed, I., Poon, B., Amin, M.A. et al. A study on the discriminating characteristics of Gabor phase-face and an improved method for face recognition. Int. J. Mach. Learn. & Cyber. 7, 1115–1130 (2016). https://doi.org/10.1007/s13042-015-0440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0440-8

Keywords

Navigation