Skip to main content
Log in

Period-adding and spiral organization of the periodicity in a Hopfield neural network

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This work reports two-dimensional parameter space plots, concerned with a three-dimensional Hopfield-type neural network with a hyperbolic tangent as the activation function. It shows that typical periodic structures embedded in a chaotic region, called shrimps, organize themselves in two independent ways: (i) as spirals that individually coil up toward a focal point while undergo period-adding bifurcations and, (ii) as a sequence with a well-defined law of formation, constituted by two different period-adding sequences inserted between.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gallas JAC (1993) Structure of the parameter space of the Hénon map. Phys Rev Lett 70:2714–2717

    Article  Google Scholar 

  2. Bonatto C, Garreau JC, Gallas JAC (2005) Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. Phys Rev Lett 95:143905

    Article  Google Scholar 

  3. Albuquerque HA, Rubinger RM, Rech PC (2008) Self-similar structures in a 2D parameter-space of an inductorless Chua’s circuit. Phys Lett A 372:4793–4798

    Article  MATH  Google Scholar 

  4. Bonatto C, Gallas JAC (2008) Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. Phys Rev Lett 101:054101

    Article  Google Scholar 

  5. Bonatto C, Gallas JAC, Ueda Y (2008) Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. Phys Rev E 77:026217

    Article  Google Scholar 

  6. Freire JG, Bonatto C, DaCamara CC, Gallas JAC (2008) Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model. Chaos 18:033121

    Article  MathSciNet  Google Scholar 

  7. Cardoso JCD, Albuquerque HA, Rubinger RM (2009) Complex periodic structures in bi-dimensional bifurcation diagrams of a RLC circuit model with a nonlinear NDC device. Phys Lett A 373:2050–2053

    Article  MATH  Google Scholar 

  8. Freire JG, Gallas JAC (2010) Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. Phys Rev E 82:037202

    Article  Google Scholar 

  9. Medeiros ES, de Souza SLT, Medrano-T RO, Caldas IL (2010) Periodic window arising in the parameter space of an impact oscillator. Phys Lett A 374:2628–2635

    Article  MATH  Google Scholar 

  10. Ramirez-Avila GM, Gallas JAC (2010) How similar is the performance of the cubic and the piecewise-linear circuits of Chua? Phys Lett A 375:143–148

    Article  MATH  MathSciNet  Google Scholar 

  11. Rech PC (2010) Self-similarities and period-adding in the parameter-space of a nonlinear resonant coupling process. Int J Nonlinear Sci 10:179–185

    MATH  MathSciNet  Google Scholar 

  12. Slipantschuk J, Ullner E, Baptista MS, Zeineddine M, Thiel M (2010) Abundance of stable periodic behavior in a Red Grouse population model with delay: a consequence of homoclinicity. Chaos 20:045117

    Article  Google Scholar 

  13. Stegemann C, Albuquerque HA, Rech PC (2010) Some two-dimensional parameter spaces of a Chua system with cubic nonlinearity. Chaos 20:023103

    Article  Google Scholar 

  14. Testoni GE, Rech PC (2010) Dynamics of a particular Lorenz type system. Int J Mod Phys C 21:973–982

    Article  MATH  MathSciNet  Google Scholar 

  15. Kovanis V, Gavrielides A, Gallas JAC (2011) Labyrinth bifurcations in optically injected diode lasers. Eur Phys J D 58:181–186

    Google Scholar 

  16. Nascimento MA, Gallas JAC, Varela H (2011) Self-organized distribution of periodicity and chaos in an electrochemical oscillator. Phys Chem Chem Phys 13:441–446

    Article  Google Scholar 

  17. Rech PC (2011) Dynamics of a neuron model in different two-dimensional parameter-spaces. Phys Lett A 375:1461–1464

    Article  MATH  Google Scholar 

  18. Krüger TS, Rech PC (2012) Dynamics of an erbium-doped fiber dual-ring laser. Eur Phys J D 66:12

    Google Scholar 

  19. Mathias AC, Rech PC (2012) Hopfield neural network: the hyperbolic tangent and the piecewise-linear activation functions. Neural Netw 34:42–45

    Article  Google Scholar 

  20. Maranhão DM, Baptista MS, Sartorelli JC, Caldas IL (2008) Experimental observation of a complex periodic window. Phys Rev E 77:037202

    Article  Google Scholar 

  21. Stoop R, Benner P, Uwate Y (2010) Real-world existence and origins of the spiral organization of shrimp-shaped domains. Phys Rev Lett 105:074102

    Article  Google Scholar 

  22. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81:3088–3092

    Article  Google Scholar 

  23. Korner E, Kupper R, Rahman MKM, Shkuro Y (2007) Neurocomputing research developments. Nova Science Publishers, New York

    Google Scholar 

  24. Zheng H, Wang H (2012) Improving pattern discovery and visualisation with self-adaptive neural networks through data transformations. Int J Mach Learn Cybern 3:173–182

    Article  Google Scholar 

  25. Gan Q (2013) Synchronization of competitive neural networks with different time scales and time-varying delay based on delay partitioning approach. Int J Mach Learn Cybern 4:327–337

    Article  Google Scholar 

  26. Huang W-Z, Huang Y (2011) Chaos, bifurcations and robustness of a class of Hopfield neural networks. Int J Bifurc Chaos 21:885–895

    Article  MATH  Google Scholar 

  27. Chen P-F, Chen Z-Q, Wu W-J (2010) A novel chaotic system with one source and two saddle-foci in Hopfield neural networks. Chin Phys B 19:040509

    Article  Google Scholar 

  28. Zheng P, Tang W, Zhang J (2010) Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing 73:2280–2285

    Article  Google Scholar 

  29. Wiggins S (2003) Introduction to applied nonlinear dynamical systems and Chaos. Springer, New York

    MATH  Google Scholar 

  30. Gallas JAC (2010) The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows. Int J Bifurc Chaos 20:197–211

    Article  MATH  MathSciNet  Google Scholar 

  31. Albuquerque HA, Rech PC (2012) Spiral periodic structure inside chaotic region in parameter-space of a Chua circuit. Int J Circ Theor Appl 40:189–194

    Article  Google Scholar 

  32. Vitolo R, Glendinning P, Gallas JAC (2011) Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. Phys Rev E 84:016216

    Article  Google Scholar 

  33. Barrio R, Blesa F, Serrano S, Shilnikov A (2011) Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci. Phys Rev E 84:035201(R)

    Article  Google Scholar 

  34. Freire JG, Gallas JAC (2011) Stern–Brocot trees in the periodicity of mixed-mode oscillations. Phys Chem Chem Phys 13:12191–12198

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Conselho Nacional de Desenvolvimento Cientí fico e Tecnológico (CNPq), Brazil, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo C. Rech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rech, P.C. Period-adding and spiral organization of the periodicity in a Hopfield neural network. Int. J. Mach. Learn. & Cyber. 6, 1–6 (2015). https://doi.org/10.1007/s13042-013-0222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0222-0

Keywords

Navigation