Skip to main content
Log in

Long Non-coding RNA H19 Promotes NLRP3-Mediated Pyroptosis After Subarachnoid Hemorrhage in Rats

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract 

NLRP3 inflammasomes have been reported to be an essential mediator in the inflammatory response during early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have indicated that NLRP3 inflammasome-mediated pyroptosis and long non-coding RNA (lncRNA) H19 can participate in the inflammatory response. However, the roles and functions of lncRNA H19 in NLRP3 inflammasome-mediated pyroptosis during EBI after SAH are unknown and need to be further elucidated. NLRP3 inflammasome proteins were significantly elevated in CSF of human with SAH induced EBI and presented a positive correlation with severity. In ipsilateral hemisphere cortex of rats, these NLRP3 inflammasome proteins were also increased and accompanied with upregulation of H19, and both of NLRP3 and H19 were peaked at 24 h after SAH. However, knockdown of H19 markedly decreased the expression of NLRP3 inflammasome proteins at 24 h after SAH in rats and also ameliorated EBI, showing improved neurobehavioral deficits, cerebral edema, and neuronal injury. Moreover, knocking down of H19 downregulated the expression of Gasdermin D (GSDMD) in microglia in SAH rats. Similarly, knockdown of H19 also alleviated OxyHb-induced pyroptosis and NLRP3-mediated inflammasomes activation in primary microglia. Lastly, H19 competitively sponged with rno-miR-138-5p and then upregulated NLRP3 expression in the post-SAH inflammatory response. lncRNA H19 promotes NLRP3-mediated pyroptosis by functioning as rno-miR-138-5p sponge in rats during EBI after SAH, which might provide a potential therapeutic target for post-SAH inflammation regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

NLRP3 :

Nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3

EBI :

Early brain injury

SAH :

Subarachnoid hemorrhage

lncRNAs :

Long non-coding RNAs

CSF :

Cerebrospinal fluid

IL :

Interleukin

ICV :

Intracerebroventricular

AAV :

Adeno-associated virus

OxyHb :

Oxyhemoglobin

GSDMD :

Gasdermin D

ceRNAs :

Competitive endogenous RNAs

CT :

Computed tomography

DSA :

Digital subtraction angiography

mFS :

Modified Fisher scale

LD :

Lumbar drainage

EVD :

External ventricular drainage

CNS :

Central nervous system

BMI :

Body mass index

KD :

Knock down

CON :

Control

PCD :

Programmed cell death

FL :

Full length

References 

  1. Sangeetha RP, Venkatapura RJ, Kamath S, Christopher R, Bhat DI, Arvinda HR, et al. Effect of remote ischemic preconditioning on cerebral vasospasm, biomarkers of cerebral ischemia, and functional outcomes in aneurysmal subarachnoid hemorrhage (ERVAS): a randomized controlled pilot trial. Brain Circ. 2021;7(2):104–10. https://doi.org/10.4103/bc.bc_13_21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389(10069):655–66. https://doi.org/10.1016/S0140-6736(16)30668-7.

    Article  PubMed  Google Scholar 

  3. Majewska P, Hara S, Gulati S, Solheim O. Association between transcranial Doppler vasospasm and functional outcome after subarachnoid hemorrhage. Brain Circ. 2021;7(4):271–6. https://doi.org/10.4103/bc.bc_63_21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91. https://doi.org/10.1016/j.pneurobio.2013.09.002.

    Article  PubMed  Google Scholar 

  5. Suzuki H. What is early brain injury? Transl Stroke Res. 2015;6(1):1–3. https://doi.org/10.1007/s12975-014-0380-8.

    Article  PubMed  Google Scholar 

  6. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481(7381):278–86. https://doi.org/10.1038/nature10759.

    Article  CAS  PubMed  Google Scholar 

  7. Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 2020;32:101534. https://doi.org/10.1016/j.redox.2020.101534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Orning P, Lien E, Fitzgerald KA. Gasdermins and their role in immunity and inflammation. J Exp Med. 2019;216(11):2453–65. https://doi.org/10.1084/jem.20190545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen S, Ma Q, Krafft PR, Hu Q, Rolland W 2nd, Sherchan P, et al. P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis. 2013;58:296–307. https://doi.org/10.1016/j.nbd.2013.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol. 2014;75(2):209–19. https://doi.org/10.1002/ana.24070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo Y, Lu J, Ruan W, Guo X, Chen S. MCC950 attenuated early brain injury by suppressing NLRP3 inflammasome after experimental SAH in rats. Brain Res Bull. 2019;146:320–6. https://doi.org/10.1016/j.brainresbull.2019.01.027.

    Article  CAS  PubMed  Google Scholar 

  12. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang Z, Chi YJ, Lin GQ, Xiao LF, Su GL, Yang LM. lncRNA MEG3 participates in neuronal cell injury induced by subarachnoid hemorrhage via inhibiting the Pi3k/Akt pathway. Eur Rev Med Pharmacol Sci. 2018;22(9):2824–31. https://doi.org/10.26355/eurrev_201805_14983.

    Article  CAS  PubMed  Google Scholar 

  14. Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, et al. High-throughput sequencing and co-expression network analysis of lncRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci Rep. 2017;7:46577. https://doi.org/10.1038/srep46577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen JX, Wang YP, Zhang X, Li GX, Zheng K, Duan CZ. lncRNA Mtss1 promotes inflammatory responses and secondary brain injury after intracerebral hemorrhage by targeting miR-709 in mice. Brain Res Bull. 2020;162:20–9. https://doi.org/10.1016/j.brainresbull.2020.04.017.

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Liao S, Li H, Chen Y, Yu J. Long non-coding RNA TUG1 sponges mir-145a-5p to regulate microglial polarization after oxygen-glucose deprivation. Front Mol Neurosci. 2019;12:215. https://doi.org/10.3389/fnmol.2019.00215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ge Y, Lin D, Cui B, Zhang L, Li S, Wang Z, et al. Effects of long noncoding RNA H19 on isoflurane-induced cognitive dysregulation by promoting neuroinflammation. Neuroimmunomodulation. 2021:1–11; https://doi.org/10.1159/000519124.

  18. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke. 2017;48(8):2211–21. https://doi.org/10.1161/STROKEAHA.117.017387.

    Article  CAS  PubMed  Google Scholar 

  19. Han CL, Ge M, Liu YP, Zhao XM, Wang KL, Chen N, et al. Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death Dis. 2018;9(6):617. https://doi.org/10.1038/s41419-018-0496-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, et al. Exosomes derived from microRNA-138–5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. 2019;13:71. https://doi.org/10.1186/s13036-019-0193-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sehba FA. Rat endovascular perforation model. Transl Stroke Res. 2014;5(6):660–8. https://doi.org/10.1007/s12975-014-0368-4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34. https://doi.org/10.1016/j.jneumeth.2007.08.004.

    Article  PubMed  Google Scholar 

  23. Wang F, Teng Z, Liu D, Wang Y, Lou J, Dong Z. Beta-caryophyllene liposomes attenuate neurovascular unit damage after subarachnoid hemorrhage in rats. Neurochem Res. 2020;45(8):1758–68. https://doi.org/10.1007/s11064-020-03037-8.

    Article  CAS  PubMed  Google Scholar 

  24. Tamashiro TT, Dalgard CL, Byrnes KR. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J Vis Exp. 2012;66:e3814. https://doi.org/10.3791/3814.

    Article  CAS  Google Scholar 

  25. Peng Y, Zhuang J, Ying G, Zeng H, Zhou H, Cao Y, et al. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation. 2020;17(1):165. https://doi.org/10.1186/s12974-020-01830-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu P, Zhang X, Liu Q, Xie Y, Shi X, Chen J, et al. Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis. 2019;10(8):555. https://doi.org/10.1038/s41419-019-1777-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee SW, de Rivero Vaccari JP, Truettner JS, Dietrich WD, Keane RW. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J Neuroinflammation. 2019;16(1):27. https://doi.org/10.1186/s12974-019-1423-6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao Y, Ai Y. Overexpression of lncRNA Gm15621 alleviates apoptosis and inflammation response resulting from sevoflurane treatment through inhibiting miR-133a/Sox4. J Cell Physiol. 2020;235(2):957–65. https://doi.org/10.1002/jcp.29011.

    Article  CAS  PubMed  Google Scholar 

  29. Tripathi S, Shree B, Mohapatra S, Swati Basu A, Sharma V. The expanding regulatory mechanisms and cellular functions of long non-coding RNAs (lncRNAs) in neuroinflammation. Mol Neurobiol. 2021;58(6):2916–39. https://doi.org/10.1007/s12035-020-02268-8.

    Article  CAS  PubMed  Google Scholar 

  30. Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation. 2021;18(1):188. https://doi.org/10.1186/s12974-021-02226-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem. 2018;399(11):1339–50. https://doi.org/10.1515/hsz-2018-0269.

    Article  CAS  PubMed  Google Scholar 

  32. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89. https://doi.org/10.1038/s41577-019-0165-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130–42. https://doi.org/10.1111/imr.12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54. https://doi.org/10.1016/j.tibs.2016.10.004.

    Article  CAS  PubMed  Google Scholar 

  35. Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, et al. CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med. 2021;11(1): e269. https://doi.org/10.1002/ctm2.269.

    Article  CAS  PubMed  Google Scholar 

  36. Li Q, Cao Y, Dang C, Han B, Han R, Ma H, et al. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med. 2020;12(4):11002. https://doi.org/10.15252/emmm.201911002.

    Article  CAS  Google Scholar 

  37. Wang S, Liu Y, Zhang L, Sun Z. Methods for monitoring cancer cell pyroptosis. Cancer Biol Med. 2021; https://doi.org/10.20892/j.issn.2095-3941.2021.0504.

  38. Gareev I, Beylerli O, Aliev G, Pavlov V, Izmailov A, Zhang Y, et al. The role of long non-coding RNAs in intracranial aneurysms and subarachnoid hemorrhage. Life (Basel). 2020;10(9); https://doi.org/10.3390/life10090155.

  39. Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martinez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015;29(9):3595–611. https://doi.org/10.1096/fj.14-260323.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to our researchers, collaborators, and technical assistants for their helpful suggestions and experimental assistance.

Funding

This study was supported by grants from National Natural Science Foundation of China (81870916) of Jianmin Zhang and National Natural Science Foundation of China (81971107) of Sheng Chen.

Author information

Authors and Affiliations

Authors

Contributions

Sheng Chen, Zhongzhou Su, and Yuanjian Fang contributed to the design of study. Yuanjian Fang, Xiaoyu Wang, and Zhoule Zhu performed the clinical sample collection and statistical analysis. Yibo Liu, Yujie Luo, Anke Zhang, Zefeng Wang, and Zeyu Zhang conducted the in vivo experiments. Yibo Liu, Qian Yu, and Kaikai Wang conducted the in vitro experiments. Yibo Liu, Luxi Chen, and Xiaohu Nie wrote the manuscript. John H. Zhang and Jianmin Zhang verified the underlying data. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yuanjian Fang, Zhongzhou Su or Sheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, Y., Zhang, A. et al. Long Non-coding RNA H19 Promotes NLRP3-Mediated Pyroptosis After Subarachnoid Hemorrhage in Rats. Transl. Stroke Res. 14, 987–1001 (2023). https://doi.org/10.1007/s12975-022-01104-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01104-6

Keywords

Navigation