Skip to main content
Log in

Collateral Blood Flow and Ischemic Core Growth

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Treatment of a large vessel occlusion in the acute ischemic stroke setting focuses on vessel recanalization, and endovascular thrombectomy results in favorable outcomes in appropriate candidates. Expeditious treatment is imperative, but patients often present to institutions that do not have neurointerventional surgeons and need to be transferred to a comprehensive stroke center. These treatment delays are common, and it is important to identify factors that mitigate the progression of the ischemic core in order to maximize the preservation of salvageable brain tissue. Collateral blood flow is the strongest factor known to influence ischemic core growth, which includes the input arterial vessels, tissue-level vessels, and venous outflow. Collateral blood flow at these different levels may be imaged by specific imaging techniques that may also predict ischemic core growth during treatment delays and help identify patients who would benefit from transfer and endovascular therapy, as well as identify those patients in whom transfer may be futile. Here we review collateral blood flow and its relationship to ischemic core growth in stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Writing Group M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38-360.

    Google Scholar 

  2. Powers WJ, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418.

    Article  Google Scholar 

  3. Campbell BCV, et al. Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data. Lancet Neurol. 2019;18(1):46–55.

    Article  Google Scholar 

  4. Saver JL, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.

    Article  CAS  Google Scholar 

  5. Campbell BC, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.

    Article  CAS  Google Scholar 

  6. Nogueira RG, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    Article  Google Scholar 

  7. Albers GW, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  Google Scholar 

  8. Jovin TG, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.

    Article  CAS  Google Scholar 

  9. Goyal M, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.

    Article  CAS  Google Scholar 

  10. Heit JJ, Wintermark M. Perfusion computed tomography for the evaluation of acute ischemic stroke: strengths and pitfalls. Stroke. 2016;47(4):1153–8.

    Article  Google Scholar 

  11. Goyal M, et al. Challenging the ischemic core concept in acute ischemic stroke imaging. Stroke. 2020;51(10):3147–55.

    Article  Google Scholar 

  12. Beijing Tiantan H. Study of endovascular therapy in acute anterior circulation large vessel occlusive patients with a large infarct core. 2022.

  13. Hospital de Clinicas de Porto A, et al. Randomization of endovascular treatment in acute ischemic stroke in the extended time window. 2022.

  14. Hyogo College of M. Randomized controlled trial of endovascular therapy for acute large vessel occlusion with large ischemic core. 2021.

  15. Mercy Health O. The TESLA trial: thrombectomy for emergent salvage of large anterior circulation ischemic stroke. 2022.

  16. University Hospital H, et al. Efficacy and safety of thrombectomy in stroke with extended lesion and extended time window. 2023.

  17. University Hospital M. Large stroke therapy evaluation. 2021.

  18. University Hospitals Cleveland Medical, C., N. Stryker, and H. The University of Texas Health Science Center, SELECT2: a randomized controlled trial to optimize patient’s selection for endovascular treatment in acute ischemic stroke. 2021.

  19. Yonsei U. Selection criteria in endovascular thrombectomy and thrombolytic therapy (SECRET) study: development of patient selection criteria using CT images and accompanying diseases for efficient intravenous thrombolytic and intra-arterial recanalization therapy in acute ischemic stroke. 2024.

  20. Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84.

    Article  Google Scholar 

  21. Schierling W, et al. Increased intravascular flow rate triggers cerebral arteriogenesis. J Cereb Blood Flow Metab. 2009;29(4):726–37.

    Article  Google Scholar 

  22. Winship IR. Cerebral collaterals and collateral therapeutics for acute ischemic stroke. Microcirculation. 2015;22(3):228–36.

    Article  Google Scholar 

  23. Seyman E, et al. The collateral circulation determines cortical infarct volume in anterior circulation ischemic stroke. BMC Neurol. 2016;16(1):206.

    Article  Google Scholar 

  24. Al-Dasuqi K, et al. Effects of collateral status on infarct distribution following endovascular therapy in large vessel occlusion stroke. Stroke. 2020;51(9):e193–202.

    Article  CAS  Google Scholar 

  25. Berkhemer OA, et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke. 2016;47(3):768–76.

    Article  CAS  Google Scholar 

  26. Vagal A, et al. Collateral clock is more important than time clock for tissue fate. Stroke. 2018;49(9):2102–7.

    Article  Google Scholar 

  27. Rao VL, et al. Collateral status contributes to differences between observed and predicted 24-h infarct volumes in DEFUSE 3. J Cereb Blood Flow Metab. 2020;40(10):1966–74.

    Article  CAS  Google Scholar 

  28. Tan IY, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009;30(3):525–31.

    Article  CAS  Google Scholar 

  29. Yeo LL, et al. Assessment of intracranial collaterals on CT angiography in anterior circulation acute ischemic stroke. AJNR Am J Neuroradiol. 2015;36(2):289–94.

    Article  CAS  Google Scholar 

  30. Lima FO, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke. 2010;41(10):2316–22.

    Article  Google Scholar 

  31. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981;12(6):723–5.

    Article  CAS  Google Scholar 

  32. Jones TH, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54(6):773–82.

    Article  CAS  Google Scholar 

  33. Astrup J, et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7.

    Article  CAS  Google Scholar 

  34. Symon L, Pasztor E, Branston NM. The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke. 1974;5(3):355–64.

    Article  CAS  Google Scholar 

  35. Jiang B, et al. Factors influencing infarct growth including collateral status assessed using computed tomography in acute stroke patients with large artery occlusion. Int J Stroke. 2019;14(6):603–12.

    Article  Google Scholar 

  36. de Havenon A, et al. Results from DEFUSE 3: good collaterals are associated with reduced ischemic core growth but not neurologic outcome. Stroke. 2019;50(3):632–8.

    Article  Google Scholar 

  37. Lin L, et al. Association of collateral status and ischemic core growth in patients with acute ischemic stroke. Neurology. 2021;96(2):e161–70.

    Article  CAS  Google Scholar 

  38. Tate WJ, et al. Predictors of early and late infarct growth in DEFUSE 3. Front Neurol. 2021;12:699153.

    Article  Google Scholar 

  39. Wheeler HM, et al. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke. 2013;44(3):681–5.

    Article  Google Scholar 

  40. Wang S, et al. Genetic architecture underlying variation in extent and remodeling of the collateral circulation. Circ Res. 2010;107(4):558–68.

    Article  CAS  Google Scholar 

  41. Ribo M, et al. Hyperglycemia during ischemia rapidly accelerates brain damage in stroke patients treated with tPA. J Cereb Blood Flow Metab. 2007;27(9):1616–22.

    Article  CAS  Google Scholar 

  42. Liebeskind DS, et al. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke. 2014;45(7):2036–40.

    Article  Google Scholar 

  43. Ferrari F, Moretti A, Villa RF. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural Regen Res. 2022;17(2):292–9.

    Article  CAS  Google Scholar 

  44. Rocha M, et al. Clinical characteristics of fast and slow progressors of infarct growth in anterior circulation large vessel occlusion stroke. J Cereb Blood Flow Metab 2021. p. 271678X211015068.

  45. Guenego A, et al. Hypoperfusion ratio predicts infarct growth during transfer for thrombectomy. Ann Neurol. 2018;84(4):616–20.

    Article  Google Scholar 

  46. Guenego A, et al. Hypoperfusion intensity ratio is correlated with patient eligibility for thrombectomy. Stroke. 2019;50(4):917–22.

    Article  Google Scholar 

  47. Faizy TD, et al. Perfusion imaging-based tissue-level collaterals predict ischemic lesion net water uptake in patients with acute ischemic stroke and large vessel occlusion. J Cereb Blood Flow Metab. 2021;41(8):2067–75.

    Article  CAS  Google Scholar 

  48. Guenego A, et al. Hypoperfusion intensity ratio correlates with angiographic collaterals in acute ischaemic stroke with M1 occlusion. Eur J Neurol. 2020;27(5):864–70.

    Article  CAS  Google Scholar 

  49. Guenego A, et al. Effect of oxygen extraction (brush-sign) on baseline core infarct depends on collaterals (HIR). Front Neurol. 2020;11: 618765.

    Article  Google Scholar 

  50. Kim-Tenser M, et al. CT perfusion core and ASPECT score prediction of outcomes in DEFUSE 3. Int J Stroke. 2021;16(3):288–94.

    Article  Google Scholar 

  51. Olivot JM, et al. Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 Cohort. Stroke. 2014;45(4):1018–23.

    Article  Google Scholar 

  52. Faizy TD, et al. Distinct intra-arterial clot localization affects tissue-level collaterals and venous outflow profiles. Eur J Neurol. 2021;28(12):4109–16.

    Article  Google Scholar 

  53. Faizy TD, et al. Favorable venous outflow profiles correlate with favorable tissue-level collaterals and clinical outcome. Stroke. 2021;52(5):1761–7.

    Article  Google Scholar 

  54. Lyndon D, et al. Hypoperfusion intensity ratio correlates with CTA collateral status in large-vessel occlusion acute ischemic stroke. AJNR Am J Neuroradiol. 2021;42(8):1380–6.

    Article  CAS  Google Scholar 

  55. Hermier M, et al. Hypointense transcerebral veins at T2*-weighted MRI: a marker of hemorrhagic transformation risk in patients treated with intravenous tissue plasminogen activator. J Cereb Blood Flow Metab. 2003;23(11):1362–70.

    Article  CAS  Google Scholar 

  56. Morita N, et al. Ischemic findings of T2*-weighted 3-tesla MRI in acute stroke patients. Cerebrovasc Dis. 2008;26(4):367–75.

    Article  Google Scholar 

  57. Jansen IGH, et al. Absence of cortical vein opacification is associated with lack of intra-arterial therapy benefit in stroke. Radiology. 2018;286(2):643–50.

    Article  Google Scholar 

  58. Faizy TD, Heit JJ. Rethinking the collateral vasculature assessment in acute ischemic stroke: the comprehensive collateral cascade. Top Magn Reson Imaging. 2021;30(4):181–6.

    Article  Google Scholar 

  59. Faizy TD, et al. Association of venous outflow profiles and successful vessel reperfusion after thrombectomy. Neurology 2021.

  60. Faizy TD, et al. Venous outflow profiles are linked to cerebral edema formation at noncontrast head CT after treatment in acute ischemic stroke regardless of collateral vessel status at CT angiography. Radiology. 2021;299(3):682–90.

    Article  Google Scholar 

  61. Hoffman H, et al. Cortical vein opacification for risk stratification in anterior circulation endovascular thrombectomy. J Stroke Cerebrovasc Dis. 2019;28(6):1710–7.

    Article  Google Scholar 

  62. Parthasarathy R, et al. Prognostic evaluation based on cortical vein score difference in stroke. Stroke. 2013;44(10):2748–54.

    Article  Google Scholar 

  63. Bivard A, et al. Arterial spin labeling versus bolus-tracking perfusion in hyperacute stroke. Stroke. 2014;45(1):127–33.

    Article  Google Scholar 

  64. Zaharchuk G. Arterial spin-labeled perfusion imaging in acute ischemic stroke. Stroke. 2014;45(4):1202–7.

    Article  Google Scholar 

  65. Huang YC, et al. Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MRI in patients with acute stroke. PLoS ONE. 2013;8(7):e69085.

    Article  CAS  Google Scholar 

  66. Lou X, et al. Multi-delay ASL can identify leptomeningeal collateral perfusion in endovascular therapy of ischemic stroke. Oncotarget. 2017;8(2):2437–43.

    Article  Google Scholar 

  67. Faizy TD, et al. The cerebral collateral cascade: comprehensive blood flow in ischemic stroke. Submitted: Stanford University; 2022.

    Book  Google Scholar 

  68. Schlemm L, Endres M, Nolte CH. Cost effectiveness of interhospital transfer for mechanical thrombectomy of acute large vessel occlusion stroke: role of predicted recanalization rates. Circ Cardiovasc Qual Outcomes. 2021;14(4):e007444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Heit.

Ethics declarations

Conflict of interest

Dr. Heit is a consultant for Medtronic and MicroVention and a member of the medical and scientific advisory board for iSchemaView.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, K., Heit, J.J. Collateral Blood Flow and Ischemic Core Growth. Transl. Stroke Res. 14, 13–21 (2023). https://doi.org/10.1007/s12975-022-01051-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01051-2

Keywords

Navigation