Skip to main content

Advertisement

Log in

Elevated miR-9 in Cerebrospinal Fluid Is Associated with Poor Functional Outcome After Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

This study evaluated microRNA (miRNA) changes in cerebrospinal fluid (CSF) and their association with the occurrence of delayed cerebral ischemia (DCI) and poor functional outcome after SAH. Forty-three selected miRNAs were measured in daily CSF samples from a discovery cohort of SAH patients admitted to Rigshospitalet, Copenhagen, Denmark, and compared with neurologically healthy patients. Findings were validated in CSF from a replication cohort of SAH patients admitted to Massachusetts General Hospital, Boston, Massachusetts. The CSF levels of miRNA over time were compared with the occurrence of DCI, and functional outcome after 3 months. miRNAs were quantified in 427 CSF samples from 63 SAH patients in the discovery cohort, in 104 CSF samples from 63 SAH patients in the replication cohort, and in 11 CSF samples from 11 neurologically healthy patients. The miRNA profile changed remarkably immediately after SAH. Elevated miR-9-3p was associated with a poor functional outcome in the discovery cohort (p < 0.0001) after correction for multiple testing (q < 0.01) and in the replication cohort (p < 0.01). Furthermore, elevated miR-9-5p was associated with a poor functional outcome in the discovery cohort (p < 0.01) after correction for multiple testing (q < 0.05). No miRNA was associated with DCI in both cohorts. miR-9-3p and miR-9-5p are elevated in the CSF following SAH and this elevation is associated with a poor functional outcome. These elevations have potential roles in the progression of cerebral injury and could add to early prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389(10069):655–66.

    Article  PubMed  Google Scholar 

  2. Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50(5):1413–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT. Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth. 2012;109(3):315–29.

    Article  CAS  PubMed  Google Scholar 

  4. Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017;19(12):50.

    Article  PubMed  Google Scholar 

  5. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    Article  CAS  PubMed  Google Scholar 

  7. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862–4.

    Article  CAS  PubMed  Google Scholar 

  8. Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab. 2010;30(9):1564–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: microRNAs as hormones. Mol Oncol. 2017;11(12):1673–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, et al. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun. 2017;494(1–2):144–51.

    Article  CAS  PubMed  Google Scholar 

  12. Bache S, Rasmussen R, Rossing M, Laigaard FP, Nielsen FC, Moller K. MicroRNA changes in cerebrospinal fluid after subarachnoid hemorrhage. Stroke. 2017;48(9):2391–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vergouwen MD, Vermeulen M, Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar AD. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41(10):2391–5.

    Article  PubMed  Google Scholar 

  14. Teasdale GM, Drake CG, Hunt W, et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988;51(11):1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rankin J. Cerebral vascular accidents in patients over the age of 60. II Prognosis. Scott Med J. 1957;2(5):200–15.

    Article  CAS  PubMed  Google Scholar 

  16. Mestdagh P, Van Vlierberghe P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57(1):289–300.

    Google Scholar 

  18. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G. The impact of hemolysis on cell-free microRNA biomarkers. Front Genet. 2013;4:94.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, Caffarelli E. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res. 2010;38(20):6895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci. 2008;28(53):14341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, An BY, Xi XB, Li ZW, Li FY. MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull. 2016;121:233–40.

    Article  CAS  PubMed  Google Scholar 

  23. Yao H, Ma R, Yang L, et al. MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun. 2014;5:4386.

    Article  CAS  PubMed  Google Scholar 

  24. Chen S, Wang M, Yang H, Mao L, He Q, Jin H, et al. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun. 2017;485(1):167–73.

    Article  PubMed  Google Scholar 

  25. Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2016;53(10):6809–17.

    Article  CAS  PubMed  Google Scholar 

  26. Sorensen SS, Nygaard AB, Carlsen AL, Heegaard NHH, Bak M, Christensen T. Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomark Res. 2017;5:24.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One. 2016;11(9):e0163645.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stylli SS, Adamides AA, Koldej RM, Luwor RB, Ritchie DS, Ziogas J, et al. miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126(4):1131–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kikkawa Y, Ogura T, Nakajima H, et al. Altered expression of MicroRNA-15a and Kruppel-like factor 4 in cerebrospinal fluid and plasma after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2017;108:909–916 e903.

    Article  PubMed  Google Scholar 

  30. Powers CJ, Dickerson R, Zhang SW, Rink C, Roy S, Sen CK. Human cerebrospinal fluid microRNA: temporal changes following subarachnoid hemorrhage. Physiol Genomics. 2016;48(5):361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abboud T, Mende KC, Jung R, Czorlich P, Vettorazzi E, Priefler M, et al. Prognostic value of early S100 calcium binding protein B and neuron-specific enolase in patients with poor-grade aneurysmal subarachnoid hemorrhage: a pilot study. World Neurosurg. 2017;108:669–75.

    Article  PubMed  Google Scholar 

  32. Lai PM, Du R. Association between S100B levels and long-term outcome after aneurysmal subarachnoid hemorrhage: systematic review and pooled analysis. PLoS One. 2016;11(3):e0151853.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu B, Zhang Y, Du XF, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27(7):882–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

S.B. was salaried by grants from the Research Board at Rigshospitalet, Copenhagen, Denmark and Lundbeckfonden (R212-2015-1987). Reagents for miRNA profiling were funded by Lundbeckfonden (R211-2015-3844), Grosserer Jakob Ehrenreich & Hustru Grete Ehrenreichs Fond, Brødrene Hartmanns Fond, Torben & Alice Frimodts Fond, Grosserer L.F.Foghts Fond, and Aase & Ejnar Danielsens Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Bache.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

According to Danish and US laws, informed consent was obtained from either the patient or by their next of kin and general practitioner.

Data Sharing Statement

The full data sets from each of the two cohorts are available as a supplemental file. Original instrument files may be available subject to a data sharing agreement that meets the requirements of host institutions as well as Danish and US laws. All data are anonymized prior to sharing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1.43 mb)

Electronic Supplementary Material

ESM 2

(XLSX 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bache, S., Rasmussen, R., Wolcott, Z. et al. Elevated miR-9 in Cerebrospinal Fluid Is Associated with Poor Functional Outcome After Subarachnoid Hemorrhage. Transl. Stroke Res. 11, 1243–1252 (2020). https://doi.org/10.1007/s12975-020-00793-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00793-1

Keywords

Navigation