Skip to main content

Advertisement

Log in

Hippocampal Deformations and Entorhinal Cortex Atrophy as an Anatomical Signature of Long-Term Cognitive Impairment: from the MCAO Rat Model to the Stroke Patient

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke patients have an elevated risk of developing long-term cognitive disorders or dementia. The latter is often associated with atrophy of the medial temporal lobe. However, it is not clear whether hippocampal and entorhinal cortex atrophy is the sole predictor of long-term post-stroke dementia. We hypothesized that hippocampal deformation (rather than atrophy) is a predictive marker of long-term post-stroke dementia on a rat model and tested this hypothesis in a prospective cohort of stroke patients.

Male Wistar rats were subjected to transient middle cerebral artery occlusion and assessed 6 months later. Ninety initially dementia-free patients having suffered a first-ever ischemic stroke were prospectively included in a clinical study. In the rat model, significant impairments in hippocampus-dependent memories were observed. MRI studies did not reveal significant atrophy of the hippocampus volume, but significant deformations were indeed observed—particularly on the ipsilateral side. There, the neuronal surface area was significantly lower in ischemic rats and was associated with a lower tissue density and a markedly thinner entorhinal cortex. At 6 months post-stroke, 49 of the 90 patients displayed cognitive impairment (males 55.10%). Shape analysis revealed marked deformations of their left hippocampus, a significantly lower entorhinal cortex surface area, and a wider rhinal sulcus but no hippocampal atrophy. Hence, hippocampal deformations and entorhinal cortex atrophy were associated with long-term impaired cognitive abilities in a stroke rat model and in stroke patients. When combined with existing biomarkers, these markers might constitute sensitive new tools for the early prediction of post-stroke dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11(7):36–42.

    Google Scholar 

  2. American Heart Association. Heart and stroke statistical update. Dallas, TX: American Heart Association Press; 1998.

    Google Scholar 

  3. Arba F, Quinn T, Hanker GJ, Ali M, Lees KR, Inzitari D. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack. Eur J Neurol. 2017;24:276–82.

    Article  CAS  PubMed  Google Scholar 

  4. Blum S, Luchsinger JA, Malny JJ, et al. Memory after silent stroke. Hippocampus and infarcts both matter. Neurology. 2012;78:38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brainin M, Tuomilehto J, Heiss WD, et al. Poststroke cognitive decline: an update and perspectives for clinical research et al. Eur J Neurol. 2015;22:222–38.

    Article  Google Scholar 

  6. Chupin M, Gérardin E, Cuingnet R, et al. Alzheimer’s disease neuroimaging initiative. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus. 2009;19(6):579–87.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cordoliani-Mackowiak MA, Henon H, Pruvo JP, et al. Poststroke dementia. Influence of hippocampal atrophy. Arch Neurol. 2003;60:585–90.

    Article  PubMed  Google Scholar 

  8. Costafreda SG, Dinov ID, Tu Z, et al. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. NeuroImage. 2011;56:212–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Csernansky JG, Wang L, Swank J, et al. Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict dementia onset in the elderly. NeuroImage. 2005;25:783–92.

    Article  CAS  PubMed  Google Scholar 

  10. De Bundel D, Schallier A, Loyens E, et al. Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J Neurosci. 2011;31(15):5792–803.

    Article  CAS  PubMed  Google Scholar 

  11. Devanand DP, Bansal R, Liu J, et al. MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. NeuroImage. 2012;60:1622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duering M, Righart R, Wollenweber FA, et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015;84:1685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Freeman SH, Kandel R, Cruz L, et al. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol. 2008;67(12):1205–12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gemmell E, Bosomworth H, Allan L, et al. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke. 2012;43(3):808–14.

    Article  PubMed  Google Scholar 

  15. Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage. 2013;80:105–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hachinski V, Iadecola C, Petersen RC. National Institute of Neurological Disorders and Stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke. 2006;37(9):2220–41.

    Article  PubMed  Google Scholar 

  17. Hanke J. Sulcal pattern of the anterior parahippocampal gyrus in the human adult. Ann Anat. 1997;179:335–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hennig J, Nauerth A, Friedburg HRARE. Imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3(6):823–33.

    Article  CAS  PubMed  Google Scholar 

  19. Henon H, Pasquier F, Leys D. Poststroke dementia. Cerebrovasc Dis. 2006;22(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  20. Hidaka N, Suemaru K, Li B, et al. Effects of repeated electroconvulsive seizures on spontaneous alternation behavior and locomotor activity in rats. Biol Pharm Bull. 2008;31(10):1928–32.

    Article  CAS  PubMed  Google Scholar 

  21. Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta Molecular Basis of Disease. 2016;1862(5):915–25.

    Article  CAS  Google Scholar 

  22. Karki K, Knight RA, Shen LH, et al. Chronic brain tissue remodelling after stroke in rat: a 1-year multiparametric magnetic resonance imaging study. Brain Res. 2010;1360:168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karl JM, Alaverdashvili M, Cross AR, et al. Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience. 2010;170(1):123–37.

    Article  CAS  PubMed  Google Scholar 

  24. Kim GH, Lee JH, Seo SW, et al. Hippocampal volume and shape in pure subcortical vascular dementia. Neurobiol Aging. 2015;36:485–91.

    Article  PubMed  Google Scholar 

  25. Kiryk A, Pluta R, Figiel I, et al. Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury. Behav Brain Res. 2011;219(1):1–7.

    Article  PubMed  Google Scholar 

  26. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  27. Letechipia-Vallejo G, Lopez-Loeza E, Espinoza-Gonzalez V, et al. Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J Pineal Res. 2007;42(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  28. Liu YF, Chen HI, Yu L, et al. Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem. 2008;90:81–9.

    Article  CAS  PubMed  Google Scholar 

  29. Marche K, Danel T, Bordet R. Fetal alcohol-induced hyperactivity is reversed by treatment with the PPARalpha agonist fenofibrate in a rat model. Psychopharmacology. 2011;214(1):285–96.

    Article  CAS  PubMed  Google Scholar 

  30. Modo M, Stroemer RP, Tang E, et al. Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods. 2000;104(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  31. Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297(5868):681–3.

    Article  CAS  PubMed  Google Scholar 

  32. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  33. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. London: Academic Press Limited; 2001.

    Google Scholar 

  34. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–18.

    Article  PubMed  Google Scholar 

  35. Plaisier F, Bastide M, Ouk T, et al. Stobadine-induced hastening of sensorimotor recovery after focal ischemia/reperfusion is associated with cerebrovascular protection. Brain Res. 2008;1208:240–9.

    Article  CAS  PubMed  Google Scholar 

  36. Pluta R, Ulamek M, Jablonski M. Alzheimer’s mechanisms in ischemic brain degeneration. Anat Rec. 2009;292(12):1863–81.

    Article  CAS  Google Scholar 

  37. Ray KM, Wang H, Chu Y, et al. Mild cognitive impairment: apparent diffusion coefficient in regional gray matter and white matter structures. Radiology. 2006;241(1):197–205.

    Article  PubMed  Google Scholar 

  38. Risacher SL, Saykin AJ, West JD, et al. Curr Alzheimer Res. 2009;6:347–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarazin M, Berr C, De Rotrou J, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology. 2007;69:1859–67.

    Article  CAS  PubMed  Google Scholar 

  40. Shimada H, Hamakawa M, Ishida A, et al. Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats. Behav Brain Res. 2013;243:21–7.

    Article  PubMed  Google Scholar 

  41. Styner M, Oguz I, Xu S, et al. Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 2006;1071:242–50.

    Google Scholar 

  42. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.

    Article  PubMed  Google Scholar 

  43. Xie M, Yi C, Luo X. Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol. 2011;70(1):121–32.

    Article  PubMed  Google Scholar 

  44. Zhan J, Brys M, Glodzik L. An entorhinal cortex sulcal pattern is associated with Alzheimer’s disease. Hum Brain Mapp. 2009;30(3):874–82.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou J, Zhuang J, Li J, et al. Long-term post-stroke changes include myelin loss, specific impairments in sensory and motor behaviors and complex cognitive deficits detected using active place avoidance. PLOSone. 2013;8(3):e57503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Nord-Pas-de-Calais Regional Council, Lille University Hospital, the French Ministry of Health, and the Fondation Coeur et Artères. We thank A. Ponchel and V. Chenal for the neuropsychological evaluation of the stroke patients. We also thank N. Durieux (from the University of Lille’s in vivo imaging core facility), C. Laloux (from the SFR DN2M functional testing core facility), M. Tardivel (from the Lille Bioimaging Centre), and the Lille Animal Facilities for technical advice and access to equipment. CC is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bastide.

Ethics declarations

All patients provided their written, informed consent to participation in the study. The study’s protocol and objectives were approved by the local independent ethics committee (CPP Nord Ouest IV, Lille, France; reference: 2009-A00141-56, March 17th, 2009).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delattre, C., Bournonville, C., Auger, F. et al. Hippocampal Deformations and Entorhinal Cortex Atrophy as an Anatomical Signature of Long-Term Cognitive Impairment: from the MCAO Rat Model to the Stroke Patient. Transl. Stroke Res. 9, 294–305 (2018). https://doi.org/10.1007/s12975-017-0576-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0576-9

Keywords

Navigation