Skip to main content

Advertisement

Log in

Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Motor impairment is the most common complication after stroke, and recovery of motor function has been shown to be dependent on the extent of lesion in the ipsilesional corticospinal tract (iCST) and activity within ipsilesional primary and secondary motor cortices. However, work from neuroimaging research has suggested a role of the contralesional hemisphere in promoting recovery after stroke potentially through the ipsilateral uncrossed CST fibers descending to ipsilateral spinal segments. These ipsilateral fibers, sometimes referred to as “latent” projections, are thought to contribute to motor recovery independent of the crossed CST. The aim of this paper is to evaluate using cumulative evidence from animal models and human patients on whether an uncrossed CST component is present in mammals and conserved through primates and humans, and whether iCST fibers have a functional role in hemiparetic/hemiplegic human conditions. This review highlights that an ipsilateral uncrossed CST exists in human during development, but the evidence on a functionally relevant iCST component in adult humans is still elusive. In addition, this review argues that whereas activity within the ipsilesional cortex is essential for enhancing motor recovery after stroke, the role of iCST projections specifically is still controversial. Finally, conclusions from current literature emphasize the importance of activity in the ipsilesional cortex and the integrity of crossed CST fibers as major determinants of motor recovery after brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armand J. Topical versus diffuse organization of the corticospinal tract in the cat. Journal de physiologie. 1978;74(3):227–30.

    CAS  PubMed  Google Scholar 

  2. Satomi H, Takahashi K, Kosaka I, Aoki M. Reappraisal of projection levels of the corticospinal fibers in the cat, with special reference to the fibers descending through the dorsal funiculus: a WGA-HRP study. Brain Res. 1989;492(1–2):255–60.

    Article  CAS  PubMed  Google Scholar 

  3. Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, et al. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J Comp Neurol. 2004;473(2):147–61. doi:10.1002/cne.20051.

    Article  PubMed  Google Scholar 

  4. Tigges J, Nakagawa S, Tigges M. Efferents of area 4 in a south American monkey (Saimiri). I. Terminations in the spinal cord. Brain Res. 1979;171(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129(Pt 3):791–808. doi:10.1093/brain/awh713.

    Article  PubMed  Google Scholar 

  6. Muller K, Kass-Iliyya F, Reitz M. Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann Neurol. 1997;42(5):705–11. doi:10.1002/ana.410420506.

    Article  CAS  PubMed  Google Scholar 

  7. Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krageloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain. 2002;125(Pt 10):2222–37.

    Article  PubMed  Google Scholar 

  8. Lawrence DG, Kuypers HG. Pyramidal and non-pyramidal pathways in monkeys: anatomical and functional correlation. Science. 1965;148(3672):973–5.

    Article  CAS  PubMed  Google Scholar 

  9. Herbert WJ, Powell K, Buford JA. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res. 2015;233(11):3231–51. doi:10.1007/s00221-015-4390-x.

    Article  CAS  PubMed  Google Scholar 

  10. Buetefisch CM. Role of the Contralesional hemisphere in post-stroke recovery of upper extremity motor function. Front Neurol. 2015;6:214. doi:10.3389/fneur.2015.00214.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dancause N, Touvykine B, Mansoori BK. Inhibition of the contralesional hemisphere after stroke: reviewing a few of the building blocks with a focus on animal models. Prog Brain Res. 2015;218:361–87. doi:10.1016/bs.pbr.2015.01.002.

    Article  PubMed  Google Scholar 

  12. Eyre JA. Development and plasticity of the corticospinal system in man. Neural Plast. 2003;10(1–2):93–106. doi:10.1155/NP.2003.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001;57(9):1543–54.

    Article  CAS  PubMed  Google Scholar 

  14. Dum RP, Strick PL. Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci. 1996;16(20):6513–25.

    CAS  PubMed  Google Scholar 

  15. Ralston DD, Ralston HJ. The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol. 1985;242(3):325–37.

    Article  CAS  PubMed  Google Scholar 

  16. Kim SH, Pohl PS, Luchies CW, Stylianou AP, Won Y. Ipsilateral deficits of targeted movements after stroke. Arch Phys Med Rehabil. 2003;84(5):719–24.

    Article  PubMed  Google Scholar 

  17. Yarosh CA, Hoffman DS, Strick PL. Deficits in movements of the wrist ipsilateral to a stroke in hemiparetic subjects. J Neurophysiol. 2004;92(6):3276–85. doi:10.1152/jn.00549.2004.

    Article  PubMed  Google Scholar 

  18. Marchi V, Guzzetta A, Cioni G. Cerebral plasticity and functional reorganization in children with congenital brain lesions. Neonatology. 2017:1–10.

  19. Rehme AK, Fink GR, von Cramon DY, Grefkes C. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex. 2011;21(4):756–68. doi:10.1093/cercor/bhq140.

    Article  PubMed  Google Scholar 

  20. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002;99(22):14518–23. doi:10.1073/pnas.222536799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci. 2010;30(36):11926–37. doi:10.1523/JNEUROSCI.5642-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cauraugh JH, Summers JJ. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol. 2005;75(5):309–20. doi:10.1016/j.pneurobio.2005.04.001.

    Article  PubMed  Google Scholar 

  23. Chen R, Yung D, Li JY. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol. 2003;89(3):1256–64. doi:10.1152/jn.00950.2002.

    Article  PubMed  Google Scholar 

  24. Soteropoulos DS, Edgley SA, Baker SN. Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci. 2011;31(31):11208–19. doi:10.1523/JNEUROSCI.0257-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518–27.

    Article  CAS  PubMed  Google Scholar 

  26. Foltys H, Krings T, Meister IG, Sparing R, Boroojerdi B, Thron A, et al. Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clin Neurophysiol. 2003;114(12):2404–15.

    Article  PubMed  Google Scholar 

  27. Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke. 2000;31(3):656–61.

    Article  CAS  PubMed  Google Scholar 

  28. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006;129(3):809–19.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Armand J, Kuypers HG. Organization of contralateral and bilateral projections of corticospinal tracts in cats. C R Hebd Seances Acad Sci D. 1977;285(16):1455–8.

    CAS  Google Scholar 

  30. Satomi H, Takahashi K, Aoki M, Kosaka I. Anatomical evidence for the re-crossing of lateral corticospinal fibers via the posterior gray commissure in the cat spinal cord. Neurosci Lett. 1988;88(2):157–60.

    Article  CAS  PubMed  Google Scholar 

  31. Rapisarda C, Simonelli G, Monti S. Cells of origin and topographic organization of corticospinal neurons in the guinea pig by the retrograde HRP method. Brain Res. 1985;334(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  32. Armand J, Kuypers HG. Cells of origin of crossed and uncrossed corticospinal fibers in the cat: a quantitative horseradish peroxidase study. Exp Brain Res. 1980;40(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  33. Brosamle C, Schwab ME. Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract. J Comp Neurol. 1997;386(2):293–303.

    Article  CAS  PubMed  Google Scholar 

  34. Alstermark B, Ogawa J, Isa T. Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons. J Neurophysiol. 2004;91(4):1832–9.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen JB, Perez MA, Oudega M, Enriquez-Denton M, Aimonetti JM. Evaluation of transcranial magnetic stimulation for investigating transmission in descending motor tracts in the rat. Eur J Neurosci. 2007;25(3):805–14. doi:10.1111/j.1460-9568.2007.05326.x.

    Article  CAS  PubMed  Google Scholar 

  36. Brus-Ramer M, Carmel JB, Martin JH. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. J Neurosci. 2009;29(19):6196–206. doi:10.1523/JNEUROSCI.5852-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoff E, Hoff H. Spinal terminations of the projection fibers from the motor cortex of primates. Brain. 1934.

  38. Nakagawa S. Onuf's nucleus of the sacral cord in a south American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res. 1980;191(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenzweig ES, Brock JH, Culbertson MD, Lu P, Moseanko R, Edgerton VR, et al. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J Comp Neurol. 2009;513(2):151–63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yoshino-Saito K, Nishimura Y, Oishi T, Isa T. Quantitative inter-segmental and inter-laminar comparison of corticospinal projections from the forelimb area of the primary motor cortex of macaque monkeys. Neuroscience. 2010;171(4):1164–79. doi:10.1016/j.neuroscience.2010.10.007.

    Article  CAS  PubMed  Google Scholar 

  41. Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Pizzimenti MA, Darling WG. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey. J Comp Neurol. 2013;521(18):4205–35. doi:10.1002/cne.23410.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kondo T, Yoshihara Y, Yoshino-Saito K, Sekiguchi T, Kosugi A, Miyazaki Y, et al. Histological and electrophysiological analysis of the corticospinal pathway to forelimb motoneurons in common marmosets. Neurosci Res. 2015;98:35–44. doi:10.1016/j.neures.2015.05.001.

    Article  PubMed  Google Scholar 

  43. Aizawa H, Mushiake H, Inase M, Tanji J. An output zone of the monkey primary motor cortex specialized for bilateral hand movement. Exp Brain Res. 1990;82(1):219–21.

    Article  CAS  PubMed  Google Scholar 

  44. Boudrias MH, Lee SP, Svojanovsky S, Cheney PD. Forelimb muscle representations and output properties of motor areas in the mesial wall of rhesus macaques. Cereb Cortex. 2010;20(3):704–19. doi:10.1093/cercor/bhp136.

    Article  PubMed  Google Scholar 

  45. Montgomery LR, Herbert WJ, Buford JA. Recruitment of ipsilateral and contralateral upper limb muscles following stimulation of the cortical motor areas in the monkey. Exp Brain Res. 2013;230(2):153–64. doi:10.1007/s00221-013-3639-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Hynes SM, Pizzimenti MA, et al. Vulnerability of the medial frontal corticospinal projection accompanies combined lateral frontal and parietal cortex injury in rhesus monkey. J Comp Neurol. 2015;523(4):669–97. doi:10.1002/cne.23703.

    Article  CAS  PubMed  Google Scholar 

  47. Aisaka A, Aimi Y, Yasuhara O, Tooyama I, Kimura H, Shimada M. Two modes of corticospinal reinnervation occur close to spinal targets following unilateral lesion of the motor cortex in neonatal hamsters. Neuroscience. 1999;90(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Z, Zhang RL, Li Y, Cui Y, Chopp M. Remodeling of the corticospinal innervation and spontaneous behavioral recovery after ischemic stroke in adult mice. Stroke. 2009;40(7):2546–51. doi:10.1161/STROKEAHA.109.547265.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Whishaw IQ, Metz GA. Absence of impairments or recovery mediated by the uncrossed pyramidal tract in the rat versus enduring deficits produced by the crossed pyramidal tract. Behav Brain Res. 2002;134(1–2):323–36.

    Article  PubMed  Google Scholar 

  50. Carmel JB, Kimura H, Berrol LJ, Martin JH. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci. 2013;37(7):1090–102.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez CL, Gharbawie OA, Williams PT, Kleim JA, Kolb B, Whishaw IQ. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur J Neurosci. 2004;20(12):3442–52. doi:10.1111/j.1460-9568.2004.03751.x.

    Article  PubMed  Google Scholar 

  52. Okabe N, Narita K, Miyamoto O. Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it? Neural Regen Res. 2017;12(2):185–92. doi:10.4103/1673-5374.200792.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344(6189):1250–5. doi:10.1126/science.1253050.

    Article  CAS  PubMed  Google Scholar 

  54. Fouad K, Klusman I, Schwab ME. Regenerating corticospinal fibers in the marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti-Nogo-a antibody IN-1. Eur J Neurosci. 2004;20(9):2479–82. doi:10.1111/j.1460-9568.2004.03716.x.

    Article  CAS  PubMed  Google Scholar 

  55. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 2006;12(7):790–2. doi:10.1038/nm1436.

    Article  CAS  PubMed  Google Scholar 

  56. Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain. 2012;135(Pt 7):2277–89. doi:10.1093/brain/aws115.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 1990;113(Pt 2):303–24.

    Article  PubMed  Google Scholar 

  58. Colebatch JG, Rothwell JC, Day BL, Thompson PD, Marsden CD. Cortical outflow to proximal arm muscles in man. Brain. 1990;113(Pt 6):1843–56.

    Article  PubMed  Google Scholar 

  59. Berardelli A, Priori A, Inghilleri M, Cruccu G, Mercuri B, Manfredi M. Corticobulbar and corticospinal projections to neck muscle motoneurons in man. A functional study with magnetic and electric transcranial brain stimulation. Exp Brain Res. 1991;87(2):402–6.

    Article  CAS  PubMed  Google Scholar 

  60. Carr LJ, Harrison LM, Stephens JA. Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol. 1994;475(2):217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strutton PH, Beith ID, Theodorou S, Catley M, McGregor AH, Davey NJ. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man. Exp Brain Res. 2004;158(4):474–9. doi:10.1007/s00221-004-1939-5.

    Article  PubMed  Google Scholar 

  62. Quartarone A, MacKinnon C, Rothwell J. Ipsilateral EMG responses in pectoralis major muscle evoked by transcranial magnetic stimulation over the motor cortex. J Physiol Paris. 1999;520:74P.

    Google Scholar 

  63. Tunstill SA, Wynn-Davies AC, Nowicky AV, McGregor AH, Davey NJ. Corticospinal facilitation studied during voluntary contraction of human abdominal muscles. Exp Physiol. 2001;86(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  64. Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol. 1999;518(Pt 3):895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellaway PH, Davey NJ, Maskill DW, Rawlinson SR, Lewis HS, Anissimova NP. Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man. Electroencephalogr Clin Neurophysiol. 1998;109(2):104–13.

    Article  CAS  PubMed  Google Scholar 

  66. Tsao H, Galea MP, Hodges PW. Concurrent excitation of the opposite motor cortex during transcranial magnetic stimulation to activate the abdominal muscles. J Neurosci Methods. 2008;171(1):132–9. doi:10.1016/j.jneumeth.2008.02.005.

    Article  PubMed  Google Scholar 

  67. Kikuchi T, Matsumoto R, Mikuni N, Yokoyama Y, Matsumoto A, Ikeda A, et al. Asymmetric bilateral effect of the supplementary motor area proper in the human motor system. Clin Neurophysiol. 2012;123(2):324–34. doi:10.1016/j.clinph.2011.06.011.

    Article  PubMed  Google Scholar 

  68. Lo YL, Dan YF, Tan YE, Fook-Chong S, Tan SB, Tan CT, et al. Intraoperative monitoring study of ipsilateral motor evoked potentials in scoliosis surgery. Eur Spine J. 2006;15(Suppl 5):656–60. doi:10.1007/s00586-006-0190-0.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fisher KM, Zaaimi B, Baker SN. Reticular formation responses to magnetic brain stimulation of primary motor cortex. J Physiol. 2012;590(16):4045–60. doi:10.1113/jphysiol.2011.226209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolpaw JR, Kaas JH. Taking sides: corticospinal tract plasticity during development. Neurology. 2001;57(9):1530–1.

    Article  CAS  PubMed  Google Scholar 

  71. Brouwer B, Smits E. Corticospinal input onto motor neurons projecting to ankle muscles in individuals with cerebral palsy. Dev Med Child Neurol. 1996;38(9):787–96.

    Article  CAS  PubMed  Google Scholar 

  72. Can L, Harrison L, Evans A, Stephens J. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116:1223–47.

    Article  Google Scholar 

  73. Farmer SF, Harrison LM, Ingram DA, Stephens JA. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology. 1991;41(9):1505.

    Article  CAS  PubMed  Google Scholar 

  74. Leonard CT, Goldberger ME. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. II. Maintenance of exuberant projections. Dev Brain Res. 1987;32(1):15–30.

    Article  Google Scholar 

  75. Nathan PW, Smith M, Deacon P. Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain. 1996;119(Pt 6):1809–33.

    Article  PubMed  Google Scholar 

  76. Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krägeloh-Mann I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol. 2004;56(6):854–63.

    Article  PubMed  Google Scholar 

  77. Eyre JA. Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav Rev. 2007;31(8):1136–49. doi:10.1016/j.neubiorev.2007.05.011.

    Article  CAS  PubMed  Google Scholar 

  78. Stanfield BB. The development of the corticospinal projection. Prog Neurobiol. 1992;38(2):169–202.

    Article  CAS  PubMed  Google Scholar 

  79. Verhaart W. Hypertrophy of pes pedunculi and pyramid al result of degeneration of contralateral corticofugal fiber tracts. J Comp Neurol. 1950;92(1):1–15.

    Article  Google Scholar 

  80. Sebastianelli L, Versace V, Taylor A, Brigo F, Nothdurfter W, Saltuari L et al. Functional reorganization after hemispherectomy in humans and animal models: what can we learn about the brain’s resilience to extensive unilateral lesions? Brain Res Bull. 2017.

  81. Rutten GJ, Ramsey NF, van Rijen PC, Franssen H, van Veelen CW. Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. J Child Neurol. 2002;17(4):292–7. doi:10.1177/088307380201700411.

    Article  PubMed  Google Scholar 

  82. Pilato F, Dileone M, Capone F, Profice P, Caulo M, Battaglia D, et al. Unaffected motor cortex remodeling after hemispherectomy in an epileptic cerebral palsy patient. A TMS and fMRI study. Epilepsy Res. 2009;85(2–3):243–51. doi:10.1016/j.eplepsyres.2009.03.016.

    Article  PubMed  Google Scholar 

  83. Kupper H, Kudernatsch M, Pieper T, Groeschel S, Tournier JD, Raffelt D, et al. Predicting hand function after hemidisconnection. Brain. 2016;139(Pt 9):2456–68. doi:10.1093/brain/aww170.

    Article  PubMed  Google Scholar 

  84. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci. 2006;26(22):6096–102. doi:10.1523/JNEUROSCI.4564-05.2006.

    Article  CAS  PubMed  Google Scholar 

  85. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461–74. doi:10.1002/hbm.20770.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Butefisch CM, Kleiser R, Korber B, Muller K, Wittsack HJ, Homberg V, et al. Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology. 2005;64(6):1067–9. doi:10.1212/01.WNL.0000154603.48446.36.

    Article  CAS  PubMed  Google Scholar 

  87. Verleger R, Adam S, Rose M, Vollmer C, Wauschkuhn B, Kompf D. Control of hand movements after striatocapsular stroke: high-resolution temporal analysis of the function of ipsilateral activation. Clin Neurophysiol. 2003;114(8):1468–76.

    Article  PubMed  Google Scholar 

  88. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33(2):181–9. doi:10.1002/ana.410330208.

    Article  CAS  PubMed  Google Scholar 

  89. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101(4):316–28.

    Article  CAS  PubMed  Google Scholar 

  90. Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015; doi:10.1002/ana.24510.

  91. Soderblom C, Lee DH, Dawood A, Carballosa M, Jimena Santamaria A, Benavides FD et al. 3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates. eNeuro. 2015;2(2). doi:10.1523/ENEURO.0001-15.2015.

Download references

Acknowledgments

W Feng, D Adkins, and S Kautz acknowledge grant support from National Institute of Health (P20GM109040 and HD086844).

W Feng acknowledges grant support from American Heart Association (14SDG1829003 and 15SFDRN26030003) and NIH/CTSA (UL1RR029882).

D Adkins acknowledges grant support from National Institute of Health (5R01NS065866-06).

S Tomlinson acknowledges grant support from National Institute of Health (P20GM109040) and the Department of Veterans Affairs (Merit Award 1I01RX001141 and 1BX001218).

A Alawieh acknowledges grant support from the American Heart Association (15PRE25250009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuwei Feng.

Ethics declarations

Funding

None.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawieh, A., Tomlinson, S., Adkins, D. et al. Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery. Transl. Stroke Res. 8, 529–540 (2017). https://doi.org/10.1007/s12975-017-0551-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0551-5

Keywords

Navigation