Skip to main content

Advertisement

Log in

Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes

  • SI: Challenges and Controversies in Translational Stroke Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Human ischemic stroke is very complex, and no single preclinical model can comprise all the variables known to contribute to stroke injury and recovery. Hypertension, diabetes, and hyperlipidemia are leading comorbidities in stroke patients. The use of predominantly young adult and healthy animals in experimental stroke research has created a barrier for translation of findings to patients. As such, more and more disease models are being incorporated into the research design. This review highlights the major strengths and weaknesses of the most commonly used animal models of these conditions in preclinical stroke research. The goal is to provide guidance in choosing, reporting, and executing appropriate disease models that will be subjected to different models of stroke injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ApoE:

Apolipoprotein E

BBB:

Blood-brain barrier

BP:

Blood pressure

GLUT2:

Glucose transporter 2

GRASP:

Glucose Regulation in Acute Stroke Patients Trial

HFD:

High-fat diet

HT:

Hemorrhagic transformation

HTN:

Hypertension

ICAM 1:

Intercellular adhesion molecule 1

INWEST:

Intravenous Nimodipine West European Stroke Trial

L-NAME:

L-NG-Nitroarginine methyl ester

MCAO:

Middle cerebral artery occlusion

OLETF:

Otsuka Long Evans Tokushima Fatty rats

RHRSP:

Stroke-prone renovascular hypertensive rats

SCAST:

Scandinavian Candesartan Acute Stroke Trial

SD:

Sprague-Dawley

SHR:

Spontaneous hypertensive rats

SHRSP:

Stroke-prone spontaneously hypertensive rats

STZ:

Streptozotocin

THIS:

Treatment of Hyperglycemia in Ischemic Stroke Trial

tPA:

Tissue plasminogen activator

VEGF:

Vascular endothelial growth factor

WKY:

Wistar-Kyoto

References

  1. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  3. O’Collins VE, Donnan GA, Macleod MR, Howells DW. Hypertension and experimental stroke therapies. J Cereb Blood Flow Metab. 2013;33(8):1141–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kozak W, Kozak A, Johnson MH, Elewa HF, Fagan SC. Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study. J Pharmacol Exp Ther. 2008;326(3):773–82.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly-Cobbs AI, Prakash R, Li W, Pillai B, Hafez S, Coucha M, et al. Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2013;304(6):H806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elewa HF, Kozak A, El-Remessy AB, Frye RF, Johnson MH, Ergul A, et al. Early atorvastatin reduces hemorrhage after acute cerebral ischemia in diabetic rats. J Pharmacol Exp Ther. 2009;330(2):532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spratt NJ, Fernandez J, Chen M, Rewell S, Cox S, van Raay L, et al. Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J Neurosci Methods. 2006;155(2):285–90.

    Article  PubMed  Google Scholar 

  9. Rewell SS, Fernandez JA, Cox SF, Spratt NJ, Hogan L, Aleksoska E, et al. Inducing stroke in aged, hypertensive, diabetic rats. J Cereb Blood Flow Metab. 2010;30(4):729–33.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  11. DiPiro TJ, Talbert LR, Yee CG, Matzke RG, Wells GB, Posey ML. Pharmacotherapy: a pathophysiologic approach. 9th ed. 2014. New York City: McGraw-Hill Education

  12. Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci. 2012;322(1–2):241–9.

    Article  CAS  PubMed  Google Scholar 

  13. Yao H, Nabika T. Standards and pitfalls of focal ischemia models in spontaneously hypertensive rats: with a systematic review of recent articles. J Transl Med. 2012;10:139.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pires PW, Rogers CT, McClain JL, Garver HS, Fink GD, Dorrance AM. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;301(1):H87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaiser D, Weise G, Moller K, Scheibe J, Posel C, Baasch S, et al. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun. 2014;2:169.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paiardi S, Rodella LF, De Ciuceis C, Porteri E, Boari GE, Rezzani R, et al. Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc. 2009;42(4):259–68.

    CAS  PubMed  Google Scholar 

  17. Murfee WL, Schmid-Schonbein GW. Chapter 12. Structure of microvascular networks in genetic hypertension. Methods Enzymol. 2008;444:271–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang M, Aragon M, Murfee WL. Angiogenesis in mesenteric microvascular networks from spontaneously hypertensive versus normotensive rats. Microcirculation. 2011;18(7):574–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Gallegos-Cari A, Castillo C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci. 2011;22(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  20. Nabika T, Cui Z, Masuda J. The stroke-prone spontaneously hypertensive rat: how good is it as a model for cerebrovascular diseases? Cell Mol Neurobiol. 2004;24(5):639–46.

    Article  PubMed  Google Scholar 

  21. Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review. Int J Stroke. 2011;6(5):434–44.

    Article  PubMed  Google Scholar 

  22. Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke. 1998;29(8):1708–13; discussion 13–4

  23. Del Bigio MR, Yan HJ, Kozlowski P, Sutherland GR, Peeling J. Serial magnetic resonance imaging of rat brain after induction of renal hypertension. Stroke. 1999;30(11):2440–7.

    Article  PubMed  Google Scholar 

  24. Elliott WJ. Renovascular hypertension: an update. J Clin Hypertens (Greenwich). 2008;10(7):522–33.

    Article  CAS  Google Scholar 

  25. Liao SJ, Huang RX, Su ZP, Zeng JS, Mo JW, Pei Z, et al. Stroke-prone renovascular hypertensive rat as an animal model for stroke studies: from artery to brain. J Neurol Sci. 2013;334(1-2):1–5.

    Article  PubMed  Google Scholar 

  26. Rapp JP. Dahl salt-susceptible and salt-resistant rats. A review. Hypertension. 1982;4(6):753–63.

    Article  CAS  PubMed  Google Scholar 

  27. Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats. Hypertension. 1999;33(1 Pt 2):219–24.

    Article  CAS  PubMed  Google Scholar 

  28. von Lutterotti N, Camargo MJ, Campbell Jr WG, Mueller FB, Timmermans PB, Sealey JE, et al. Angiotensin II receptor antagonist delays renal damage and stroke in salt-loaded Dahl salt-sensitive rats. J Hypertens. 1992;10(9):949–57.

    Google Scholar 

  29. Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD. Spontaneous stroke in a genetic model of hypertension in mice. Stroke. 2005;36(6):1253–8.

    Article  PubMed  Google Scholar 

  30. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow and Metab. 2010;30(1):56–69.

    Article  CAS  Google Scholar 

  31. Altmann M, Thommessen B, Ronning OM, Reichenbach AS, Fure B. Blood pressure differences between patients with lacunar and nonlacunar infarcts. Brain Behav. 2015;5(8), e00353.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sandset EC, Jusufovic M, Sandset PM, Bath PM, Berge E. Effects of blood pressure-lowering treatment in different subtypes of acute ischemic stroke. Stroke. 2015;46(3):877–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed N, Wahlgren NG. Effects of blood pressure lowering in the acute phase of total anterior circulation infarcts and other stroke subtypes. Cerebrovascular Dis. 2003;15(4):235–43.

    Article  Google Scholar 

  34. Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A. Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res. 2014;5(4):442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kruyt ND, Biessels GJ, Devries JH, Roos YB. Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nature Rev Neurol. 2010;6(3):145–55.

    Article  CAS  Google Scholar 

  36. Wang Z, Gleichmann H. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes. 1998;47(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  37. Schnedl WJ, Ferber S, Johnson JH, Newgard CB. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 1994;43(11):1326–33.

    Article  CAS  PubMed  Google Scholar 

  38. Ganda OP, Rossini AA, Like AA. Studies on streptozotocin diabetes. Diabetes. 1976;25(7):595–603.

    Article  CAS  PubMed  Google Scholar 

  39. Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res. 1981;49(6):1243–50.

    Article  CAS  PubMed  Google Scholar 

  40. Ergul A, Kelly-Cobbs A, Abdalla M, Fagan SC. Cerebrovascular complications of diabetes: focus on stroke. Endocr Metab Immune Disord Drug Targets. 2012;12(2):148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fan X, Qiu J, Yu Z, Dai H, Singhal AB, Lo EH, et al. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic stroke with diabetes. Stroke. 2012;43(2):567–70.

    Article  CAS  PubMed  Google Scholar 

  42. Ning R, Chopp M, Yan T, Zacharek A, Zhang C, Roberts C, et al. Tissue plasminogen activator treatment of stroke in type-1 diabetes rats. Neuroscience. 2012;222:326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reeson P, Tennant KA, Gerrow K, Wang J, Weiser Novak S, Thompson K, et al. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci. 2015;35(13):5128–43.

    Article  CAS  PubMed  Google Scholar 

  44. Fan X, Lo EH, Wang X. Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke. 2013;44(3):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan X, Ning M, Lo EH, Wang X. Early insulin glycemic control combined with tPA thrombolysis reduces acute brain tissue damages in a focal embolic stroke model of diabetic rats. Stroke. 2013;44(1):255–9.

    Article  CAS  PubMed  Google Scholar 

  46. Sweetnam D, Holmes A, Tennant KA, Zamani A, Walle M, Jones P, et al. Diabetes impairs cortical plasticity and functional recovery following ischemic stroke. J Neurosci. 2012;32(15):5132–43.

    Article  CAS  PubMed  Google Scholar 

  47. Yorek MS, Obrosov A, Shevalye H, Holmes A, Harper MM, Kardon RH, et al. Effect of diet-induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice. J Peripher Nerv Syst. 2015;20(1):24–31.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shevalye H, Yorek MS, Coppey LJ, Holmes A, Harper MM, Kardon RH, et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J Neurophysiol. 2015;114(1):199–208.

    Article  CAS  PubMed  Google Scholar 

  49. Holmes A, Coppey LJ, Davidson EP, Yorek MA. Rat models of diet-induced obesity and high fat/low dose streptozotocin type 2 diabetes: effect of reversal of high fat diet compared to treatment with enalapril or menhaden oil on glucose utilization and neuropathic endpoints. J Diabetes Res. 2015;2015:307285.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Biessels GJ, Bril V, Calcutt NA, Cameron NE, Cotter MA, Dobrowsky R, et al. Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the EASD (Neurodiab). J Periph Nerv Syst. 2014;19(2):77–87.

    Article  CAS  Google Scholar 

  51. Qu Z, Li W, Prakash R, Fagan SC, Ergul A. Diet-induced diabetes impairs neovascularization and functional recovery after ischemic stroke. Stroke. 2014;45:A169.

    Article  Google Scholar 

  52. Valenzuela JP, Qu Z, Prakash R, Li W, Ward R, Fagan SC et al. Metabolic syndrome alters cerebrovascular architecture: relevance to cognitive deficits and stroke outcomes. Stroke. 2015;46(AWP 412)

  53. Elgebaly MM, Prakash R, Li W, Ogbi S, Johnson MH, Mezzetti EM, et al. Vascular protection in diabetic stroke: role of matrix metalloprotease-dependent vascular remodeling. J Cereb Blood Flow Metab. 2010;30(12):1928–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li W, Prakash R, Kelly-Cobbs AI, Ogbi S, Kozak A, El-Remessy AB, et al. Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to focal cerebral ischemia. Diabetes. 2010;59(1):228–35.

    Article  PubMed  Google Scholar 

  55. Ergul A, Elgebaly MM, Middlemore ML, Li W, Elewa H, Switzer JA, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol. 2007;7:33. doi:10.1186/1471-2377-7-33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Li W, Qu Z, Prakash R, Chung C, Ma H, Hoda MN, et al. Comparative analysis of the neurovascular injury and functional outcomes in experimental stroke models in diabetic Goto-Kakizaki rats. Brain Res. 2013;1541:106–14.

    Article  CAS  PubMed  Google Scholar 

  57. Prakash R, Li W, Qu Z, Johnson MA, Fagan SC, Ergul A. Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke. 2013;44(10):2875–82.

    Article  PubMed  Google Scholar 

  58. Ritter L, Davidson L, Henry M, Davis-Gorman G, Morrison H, Frye JB, et al. Exaggerated neutrophil-mediated reperfusion injury after ischemic stroke in a rodent model of type 2 diabetes. Microcirculation. 2011;18(7):552–61.

    Article  CAS  PubMed  Google Scholar 

  59. Kumari R, Willing LB, Krady JK, Vannucci SJ, Simpson IA. Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. J Cereb Blood Flow Metab. 2007;27(4):710–8.

    CAS  PubMed  Google Scholar 

  60. Kumari R, Willing LB, Patel SD, Baskerville KA, Simpson IA. Increased cerebral matrix metalloprotease-9 activity is associated with compromised recovery in the diabetic db/db mouse following a stroke. J Neurochem. 2011;119(5):1029–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen J, Cui X, Zacharek A, Cui Y, Roberts C, Chopp M. White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke. 2011;42(2):445–52.

    Article  CAS  PubMed  Google Scholar 

  62. Kumari R, Willing LB, Patel SD, Krady JK, Zavadoski WJ, Gibbs EM, et al. The PPAR-gamma agonist, darglitazone, restores acute inflammatory responses to cerebral hypoxia-ischemia in the diabetic ob/ob mouse. J Cereb Blood Flow Metab. 2010;30(2):352–60.

    Article  CAS  PubMed  Google Scholar 

  63. Akamatsu Y, Nishijima Y, Lee CC, Yang SY, Shi L, An L, et al. Impaired leptomeningeal collateral flow contributes to the poor outcome following experimental stroke in the Type 2 diabetic mice. J Neurosci. 2015;35(9):3851–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vannucci SJ, Willing LB, Goto S, Alkayed NJ, Brucklacher RM, Wood TL, et al. Experimental stroke in the female diabetic, db/db, mouse. J Cereb Blood Flow Metab. 2001;21(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  65. Bruno A, Kent TA, Coull BM, Shankar RR, Saha C, Becker KJ, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  66. Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR. Glucose Regulation in Acute Stroke Patients (GRASP) Trial. A randomized pilot trial. Stroke. 2009;40(12):3804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ergul A, Abdelsaid M, Fouda AY, Fagan SC. Cerebral neovascularization in diabetes: implications for stroke recovery and beyond. J Cereb Blood Flow Metab. 2014;34(4):553–63.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Prakash R, Johnson M, Fagan SC, Ergul A. Cerebral neovascularization and remodeling patterns in two different models of type 2 diabetes. PLoS One. 2013;8(2), e56264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prakash R, Somanath PR, El-Remessy AB, Kelly-Cobbs A, Stern JE, Dore-Duffy P, et al. Enhanced cerebral but not peripheral angiogenesis in the Goto-Kakizaki model of type 2 diabetes involves VEGF and peroxynitrite signaling. Diabetes. 2012;61(6):1533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(8):1412–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chalothorn D, Clayton JA, Zhang H, Pomp D, Faber JE. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol Genomics. 2007;30(2):179–91.

    Article  CAS  PubMed  Google Scholar 

  72. Abdelsaid M, Prakash R, Li W, Coucha M, Hafez S, Johnson MH, et al. Metformin treatment in the period after stroke prevents nitrative stress and restores angiogenic signaling in the brain in diabetes. Diabetes. 2015;64(5):1804–17.

    Article  CAS  PubMed  Google Scholar 

  73. Sacco RL, Diener HC, Yusuf S, Cotton D, Ounpuu S, Lawton WA, et al. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med. 2008;359(12):1238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iso H, Jacobs Jr DR, Wentworth D, Neaton JD, Cohen JD. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial. N Engl J Med. 1989;320(14):904–10.

    Article  CAS  PubMed  Google Scholar 

  75. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    Article  CAS  PubMed  Google Scholar 

  76. Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke. 2015;46(10):2916–25.

    Article  CAS  PubMed  Google Scholar 

  77. Herz J, Hagen SI, Bergmuller E, Sabellek P, Gothert JR, Buer J, et al. Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiol Dis. 2014;62:456–68.

    Article  CAS  PubMed  Google Scholar 

  78. Zechariah A, ElAli A, Hagemann N, Jin F, Doeppner TR, Helfrich I, et al. Hyperlipidemia attenuates vascular endothelial growth factor-induced angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased pericyte coverage of brain endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(7):1561–7.

    Article  CAS  PubMed  Google Scholar 

  79. Fang W, Sha L, Kodithuwakku ND, Wei J, Zhang R, Han D, et al. Attenuated blood-brain barrier dysfunction by XQ-1H following ischemic stroke in hyperlipidemic rats. Mol Neurobiol. 2015;52(1):162–75.

    Article  CAS  PubMed  Google Scholar 

  80. Cao XL, Du J, Zhang Y, Yan JT, Hu XM. Hyperlipidemia exacerbates cerebral injury through oxidative stress, inflammation and neuronal apoptosis in MCAO/reperfusion rats. Exp Brain Res. 2015;233(10):2753–65.

    Article  CAS  PubMed  Google Scholar 

  81. Deng J, Zhang J, Feng C, Xiong L, Zuo Z. Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in micedagger. Cardiovasc Res. 2014;103(4):473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li W, Prakash R, Chawla D, Du W, Didion SP, Filosa JA, et al. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol Regul Integr Comp Physiol. 2013;304(11):R1001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hermann DM, Zechariah A, Kaltwasser B, Bosche B, Caglayan AB, Kilic E, et al. Sustained neurological recovery induced by resveratrol is associated with angioneurogenesis rather than neuroprotection after focal cerebral ischemia. Neurobiol Dis. 2015;83:16–25.

    Article  CAS  PubMed  Google Scholar 

  84. Doehner W. Overweight, obesity, and all-cause mortality. JAMA. 2013;309(16):1679–80.

    Article  CAS  PubMed  Google Scholar 

  85. Doehner W, Schenkel J, Anker SD, Springer J, Audebert HJ. Overweight and obesity are associated with improved survival, functional outcome, and stroke recurrence after acute stroke or transient ischaemic attack: observations from the TEMPiS trial. Eur Heart J. 2013;34(4):268–77.

    Article  PubMed  Google Scholar 

  86. Katsiki N, Ntaios G, Vemmos K. Stroke, obesity and gender: a review of the literature. Maturitas. 2011;69(3):239–43.

    Article  PubMed  Google Scholar 

  87. Vemmos K, Ntaios G, Spengos K, Savvari P, Vemmou A, Pappa T, et al. Association between obesity and mortality after acute first-ever stroke: the obesity-stroke paradox. Stroke. 2011;42(1):30–6.

    Article  PubMed  Google Scholar 

  88. Osmond JM, Mintz JD, Stepp DW. Preventing increased blood pressure in the obese Zucker rat improves severity of stroke. Am J Physiol Heart Circ Physiol. 2010;299(1):H55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Osmond JM, Mintz JD, Dalton B, Stepp DW. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension. 2009;53(2):381–6.

    Article  CAS  PubMed  Google Scholar 

  90. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.

    Article  CAS  PubMed  Google Scholar 

  91. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nature Rev Neurol. 2012;8(7):401–10.

    Article  CAS  Google Scholar 

  92. Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci. 2015;9:147.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Seifert HA, Pennypacker KR. Molecular and cellular immune responses to ischemic brain injury. Transl Stroke Res. 2014;5(5):543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Möller K, Pösel C, Kranz A, Schulz I, Scheibe J, Didwischus N, et al. Arterial hypertension aggravates innate immune responses after experimental stroke. Front Cell Neurosci. 2015;9.

  95. Ergul A, Valenzuela JP, Fouda AY, Fagan SC. Cellular connections, microenvironment and brain angiogenesis in diabetes: lost communication signals in the post-stroke period. Brain Res. 2015;1623:81–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lucke-Wold BP, Turner RC, Lucke-Wold AN, Rosen CL, Huber JD. Age and the metabolic syndrome as risk factors for ischemic stroke: improving preclinical models of ischemic stroke. Yale J Biol Med. 2012;85(4):523–39.

    PubMed  PubMed Central  Google Scholar 

  97. Persky RW, Turtzo LC, McCullough LD. Stroke in women: disparities and outcomes. Curr Cardiol Rep. 2010;12(1):6–13.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bouts MJ, Tiebosch IA, van der Toorn A, Hendrikse J, Dijkhuizen RM. Lesion development and reperfusion benefit in relation to vascular occlusion patterns after embolic stroke in rats. J Cereb Blood Flow Metab. 2014;34(2):332–8.

    Article  PubMed  Google Scholar 

  99. Yao H, Nabika T. Excess salt increases infarct size produced by photothrombotic distal middle cerebral artery occlusion in spontaneously hypertensive rats. PLoS One. 2014;9(5), e97109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Emmrich JV, Ejaz S, Neher JJ, Williamson DJ, Baron JC. Regional distribution of selective neuronal loss and microglial activation across the MCA territory after transient focal ischemia: quantitative versus semiquantitative systematic immunohistochemical assessment. J Cereb Blood Flow Metab. 2015;35(1):20–7.

    Article  PubMed  Google Scholar 

  101. Yao H, Yoshii N, Akira T, Nakahara T. Reperfusion-induced temporary appearance of therapeutic window in penumbra after 2 h of photothrombotic middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2009;29(3):565–74.

    Article  PubMed  Google Scholar 

  102. Uluc K, Miranpuri A, Kujoth GC, Akture E, Baskaya MK. Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J Vis Exp. 2011;48.

  103. McCarthy CA, Vinh A, Callaway JK, Widdop RE. Angiotensin AT2 receptor stimulation causes neuroprotection in a conscious rat model of stroke. Stroke. 2009;40(4):1482–9.

    Article  CAS  PubMed  Google Scholar 

  104. Pires PW, Girgla SS, Moreno G, McClain JL, Dorrance AM. Tumor necrosis factor-alpha inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats. Am J Physiol Heart Circ Physiol. 2014;307(5):H658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kimata H, Nakajima K, Suzuki H, Koide T, Yamamoto S, Narita T. Fibrinolytic effect of tissue plasminogen activator on cerebral embolism in stroke-prone spontaneously hypertensive rats. Chem Pharm Bull (Tokyo). 1991;39(12):3327–30.

    Article  CAS  Google Scholar 

  106. Carswell HV, Anderson NH, Clark JS, Graham D, Jeffs B, Dominiczak AF, et al. Genetic and gender influences on sensitivity to focal cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Hypertension. 1999;33(2):681–5.

    Article  CAS  PubMed  Google Scholar 

  107. Tan F, Chen J, Liang Y, Gu M, Li Y, Wang X, et al. Electroacupuncture attenuates cervical spinal cord injury following cerebral ischemia/reperfusion in stroke-prone renovascular hypertensive rats. Exp Ther Med. 2014;7(6):1529–34.

    PubMed  PubMed Central  Google Scholar 

  108. Liao SJ, Lin JW, Pei Z, Liu CL, Zeng JS, Huang RX. Enhanced angiogenesis with dl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res. 2009;1289:69–78.

    Article  CAS  PubMed  Google Scholar 

  109. Wang F, Liang Z, Hou Q, Xing S, Ling L, He M, et al. Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction. Neurosci Lett. 2007;417(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang Y, Xing S, Zhang J, Li J, Li C, Pei Z, et al. Reduction of beta-amyloid deposits by gamma-secretase inhibitor is associated with the attenuation of secondary damage in the ipsilateral thalamus and sensory functional improvement after focal cortical infarction in hypertensive rats. J Cereb Blood Flow Metab. 2011;31(2):572–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Adviye Ergul is a Research Career Scientist at the Charlie Norwood Veterans Affairs Medical Center in Augusta, Georgia. This work was supported in part by VA Merit Award (BX000347), VA Research Career Scientists Award, and NIH (R01NS083559) to Adviye Ergul; VA Merit Award (BX000891) and NIH award (NS063965) to Susan C. Fagan.

The contents do not represent the views of the Department of Veterans Affairs or the US Government.

Conflict of Interest

Adviye Ergul declares that she has no conflict of interest.

Sherif Hafez declares that he has no conflict of interest.

Abdelrahman Fouda declares that he has no conflict of interest.

Susan C. Fagan declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adviye Ergul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergul, A., Hafez, S., Fouda, A. et al. Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes. Transl. Stroke Res. 7, 248–260 (2016). https://doi.org/10.1007/s12975-016-0464-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0464-8

Keywords

Navigation