Skip to main content

Advertisement

Log in

SIRT1 Regulation Modulates Stroke Outcome

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Silent information regulator 1 (SIRT1) is a NAD+−dependent histone deacetylase that represses gene expression and plays a role in longevity. SIRT1 responds to diverse stress conditions and regulates metabolism in nutrient deficiency conditions; therefore, it is involved in adaptive pathways to better fulfill tissue needs in a disturbed environment. SIRT1 overexpression or activation is protective in neurodegenerative diseases. Its role in acute nervous system injury, such as brain ischemia, is emerging, but whether SIRT1 activation improves stroke outcome is still a matter of controversy. In the present review, we will document present knowledge about the contribution of SIRT1 in death/survival in cell and animal models of brain ischemia and discuss whether SIRT1 could be a valuable target for therapeutic intervention in human stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brand D, Ratan R. Epigenetics and the environment: In Search of the “toleroasome” vital to execution of ischemic preconditioning. Transl Stroke Res. 2013;4(1):56–62.

    Article  CAS  Google Scholar 

  2. Fu Y, Sun JL, Ma JF, Geng X, Sun J, Liu JR, et al. The neuroprotection of prodromal transient ischaemic attack on cerebral infarction. Eur J Neurol. 2008;15(8):797–801.

    Article  PubMed  CAS  Google Scholar 

  3. Schaller B. Ischemic preconditioning as induction of ischemic tolerance after transient ischemic attacks in human brain: its clinical relevance. Neurosci Lett. 2005;377(3):206–11.

    Article  PubMed  CAS  Google Scholar 

  4. Herranz D, Serrano M. SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010;10(12):819–23.

    Article  PubMed  CAS  Google Scholar 

  5. Imai S-i, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharm Sci. 2010;31(5):212–20.

    Article  PubMed  CAS  Google Scholar 

  6. Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol. 2011;2011:1–17.

    Article  Google Scholar 

  7. Chuang D-M, Leng Y, Marinova Z, Kim H-J, Chiu C-T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009;32(11):591–601.

    Article  PubMed  CAS  Google Scholar 

  8. Byles V, Chmilewski LK, Wang J, Zhu L, Forman LW, Faller DV, et al. Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int J Biol Sci. 2010;6(6):599–612.

    Article  PubMed  Google Scholar 

  9. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+−dependent histone deacetylase SIRT1. J Biol Chem. 2007;282(9):6823–32.

    Article  PubMed  CAS  Google Scholar 

  10. Jin Q, Yan T, Ge X, Sun C, Shi X, Zhai Q. Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol. 2007;213(1):88–97.

    Article  PubMed  CAS  Google Scholar 

  11. Yang X-J, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008;31(4):449–61.

    Article  PubMed  CAS  Google Scholar 

  12. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16(1):93–105.

    Article  PubMed  CAS  Google Scholar 

  13. Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA. Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab. 2011;31(4):1003–19.

    Article  PubMed  CAS  Google Scholar 

  14. Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta. 2010;1804(8):1684–89.

    Article  PubMed  CAS  Google Scholar 

  15. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390–92.

    Article  PubMed  CAS  Google Scholar 

  16. Bordone L, Cohen D, Robinson A, Motta MC, Van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6(6):759–67.

    Article  PubMed  CAS  Google Scholar 

  17. Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010;67(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  18. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    Article  PubMed  CAS  Google Scholar 

  19. Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA. 2007;104(17):7217–22.

    Article  PubMed  CAS  Google Scholar 

  20. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.

    Article  PubMed  CAS  Google Scholar 

  21. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011–15.

    Article  PubMed  CAS  Google Scholar 

  22. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 2004;14(8):408–12.

    Article  PubMed  CAS  Google Scholar 

  23. Hasegawa K, Yoshikawa K. Necdin regulates p53 acetylation via sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci. 2008;28(35):8772–84.

    Article  PubMed  CAS  Google Scholar 

  24. Lanzillotta A, Pignataro G, Branca C, Cuomo O, Sarnico I, Benarese M, et al. Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window. Neurobiol Dis. 2013;49:177–89.

    Article  CAS  Google Scholar 

  25. Yan W, Fang Z, Yang Q, Dong H, Lu Y, Lei C, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab. 2013;33(3):396–406.

    Article  PubMed  CAS  Google Scholar 

  26. Pfister JA, Ma C, Morrison BE, D'Mello SR. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PloS One. 2008;3(12):e4090.

    Article  PubMed  Google Scholar 

  27. Yao H, Rahman I. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharm. 2012;84(10):1332–39.

    Article  PubMed  CAS  Google Scholar 

  28. Kong S, McBurney MW, Fang D. Sirtuin 1 in immune regulation and autoimmunity. Immunol Cell Biol. 2012;90(1):6–13.

    Article  PubMed  CAS  Google Scholar 

  29. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-[kappa]B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.

    Article  PubMed  CAS  Google Scholar 

  30. Zong Y, Sun L, Liu B, Deng Y-S, Zhan D, Chen Y-L, et al. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 Macrophage Cells. PLoS One. 2012;7(8).

  31. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PloS One. 2012;7(9):e46364.

    Article  PubMed  CAS  Google Scholar 

  32. Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism—the epigenetic link. J Cell Sci. 2010;123:3837–48.

    Article  PubMed  CAS  Google Scholar 

  33. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA. 2008;105(40):15599–604.

    Article  PubMed  CAS  Google Scholar 

  34. Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J, et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci. 2008;28(40):9989–96.

    Article  PubMed  CAS  Google Scholar 

  35. Kumar R, Chaterjee P, Sharma PK, Singh AK, Gupta A, Gill K, et al. Sirtuin1: a promising serum protein marker for early detection of Alzheimer's disease. PloS One. 2013;8(4):1–e61560.

    Google Scholar 

  36. Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharm Sci. 2012;33(9):494–501.

    Article  PubMed  CAS  Google Scholar 

  37. Hung C-W, Chen Y-C, Hsieh W-L, Chiou S-H, Kao C-L. Ageing and neurodegenerative diseases. Ageing Res Rev. 2010;9:S36–46.

    Article  PubMed  Google Scholar 

  38. Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 Suppresses β-amyloid production by activating the α-secretase gene ADAM10. Cell. 2010;142(2):320–32.

    Article  PubMed  CAS  Google Scholar 

  39. Min S-W, Cho S-H, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010;67(6):953–66.

    Article  PubMed  CAS  Google Scholar 

  40. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37(4):349–50.

    Article  PubMed  CAS  Google Scholar 

  41. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2012;18(1):159–65.

    Article  CAS  Google Scholar 

  42. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med. 2012;18(1):153–58.

    Article  CAS  Google Scholar 

  43. Donmez G, Arun A, Chung C-Y, McLean PJ, Lindquist S, Guarente L. SIRT1 Protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci. 2012;32(1):124–32.

    Article  PubMed  CAS  Google Scholar 

  44. Kakefuda K, Fujita Y, Oyagi A, Hyakkoku K, Kojima T, Umemura K, et al. Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun. 2009;387(4):784–88.

    Article  PubMed  CAS  Google Scholar 

  45. Park G, Jeong J-W, Kim J-E. SIRT1 deficiency attenuates MPP+−induced apoptosis in dopaminergic cells. FEBS Lett. 2011;585(1):219–24.

    Article  PubMed  CAS  Google Scholar 

  46. Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, Leoni F, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharm. 2006;70(6):1876–84.

    Article  CAS  Google Scholar 

  47. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler J-P, Boutillier A-L. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J. 2003;22(24):6537–49.

    Article  PubMed  CAS  Google Scholar 

  48. Kim SH, Lu HF, Alano CC. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PloS One. 2011;6(3):1–e14731.

    Google Scholar 

  49. Ren M, Leng Y, Jeong M, Leeds PR, Chuang D-M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem. 2004;89(6):1358–67.

    Article  PubMed  CAS  Google Scholar 

  50. Marinova Z, Ren M, Wendland JR, Leng Y, Liang M-H, Yasuda S, et al. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem. 2009;111(4):976–87.

    Article  PubMed  CAS  Google Scholar 

  51. Lanzillotta A, Sarnico I, Ingrassia R, Boroni F, Branca C, Benarese M, et al. The acetylation of RelA in Lys310 dictates the NF-[kappa]B-dependent response in post-ischemic injury. Cell Death Dis. 2010;1:e96.

    Article  PubMed  CAS  Google Scholar 

  52. Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol Med. 2009;11(1):28–42.

    Article  CAS  Google Scholar 

  53. Wang L, Wang Y, Cui M, Luo W, Wang X, Barber P, et al. A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur J Neurosci 2013:1–13.

  54. Raval AP, Dave KR, Perez-Pinzon MA. Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab. 2005;26(9):1141–47.

    PubMed  Google Scholar 

  55. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1—uncoupling protein 2 pathway. Neuroscience. 2009;159(3):993–1002.

    Article  PubMed  CAS  Google Scholar 

  56. Liu D, Pitta M, Mattson MP. Preventing NAD+ depletion protects neurons against excitotoxicity. Ann N Y Acad Sci. 2008;1147(1):275–82.

    Article  PubMed  CAS  Google Scholar 

  57. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PloS Biol. 2006;4(2):e31.

    Article  PubMed  Google Scholar 

  58. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010–13.

    Article  PubMed  CAS  Google Scholar 

  59. Li X-h, Chen C, Tu Y, Sun H-t, Zhao M-l, Cheng S-x, et al. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol. 2013:1–10.

  60. Abdellatif M. Sirtuins and Pyridine Nucleotides. Circ Res. 2012;111(5):642–56.

    Article  PubMed  CAS  Google Scholar 

  61. Wang P, Xu T-Y, Guan Y-F, Tian W-W, Viollet B, Rui Y-C, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate–activated kinase pathway. Ann Neurol. 2011;69(2):360–74.

    Article  PubMed  CAS  Google Scholar 

  62. Wang P, Guan Y-F, Du H, Zhai Q-W, Su D-F, Miao C-Y. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012;8(1):77–87.

    Article  PubMed  CAS  Google Scholar 

  63. Jeong J-K, Moon M-H, Lee Y-J, Seol J-W, Park S-Y. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol Aging. 2013;34(1):146–56.

    Article  PubMed  CAS  Google Scholar 

  64. Guo W, Qian L, Zhang J, Zhang W, Morrison A, Hayes P, et al. Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling. J Neurosci Res. 2011;89(11):1723–36.

    Article  PubMed  CAS  Google Scholar 

  65. Li Y, Yokota T, Gama V, Yoshida T, Gomez JA, Ishikawa K, et al. Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ. 2007;14(12):2058–67.

    Article  PubMed  CAS  Google Scholar 

  66. Kim GW, Noshita N, Sugawara T, Chan PH. Early decrease in DNA repair proteins, Ku70 and Ku86, and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke. 2001;32(6):1401–07.

    Article  PubMed  CAS  Google Scholar 

  67. Chelluboina B, Klopfenstein JD, Gujrati M, Rao JS, Veeravalli KK. Temporal regulation of apoptotic and anti-apoptotic molecules after middle cerebral artery occlusion followed by reperfusion. Mol Neurobiol. 2013.

  68. Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L, Gautam S. p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke. 1994;25(4):849–55.

    Article  PubMed  CAS  Google Scholar 

  69. Leker RR, Aharonowiz M, Greig NH, Ovadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin α. Exp Neurol. 2004;187(2):478–86.

    Article  PubMed  CAS  Google Scholar 

  70. Shi H. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr Med Chem. 2009;16(34):4593–600.

    Article  PubMed  CAS  Google Scholar 

  71. Ma Y, Zechariah A, Qu Y, Hermann DM. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res. 2012;90(10):1873–82.

    Article  PubMed  CAS  Google Scholar 

  72. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864–78.

    Article  PubMed  CAS  Google Scholar 

  73. Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions. PloS One. 2012;7(3):e33433.

    Article  PubMed  CAS  Google Scholar 

  74. Wang FM, Chen YJ, Ouyang HJ. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2010;433(1):245–52.

    Article  Google Scholar 

  75. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PloS One. 2010;5(2):e9199.

    Article  PubMed  Google Scholar 

  76. Hermann DM, Kilic E, Hata R, Hossmann KA, Mies G. Relationship between metabolic dysfunctions, gene responses and delayed cell death after mild focal cerebral ischemia in mice. Neuroscience. 2001;104(4):947–55.

    Article  PubMed  CAS  Google Scholar 

  77. MartíndelaVega C, Burda J, Nemethova M, Quevedo C, Alcázar A, Martín ME, et al. Possible mechanisms involved in the down-regulation of translation during transient global ischaemia in the rat brain. Biochem J. 2001;357(3):819–26.

    Article  Google Scholar 

  78. Petegnief V, Font-nieves M, Martín ME, Salinas M, Planas AM. Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis. Biochem J. 2008;411(3):667–77.

    Article  PubMed  CAS  Google Scholar 

  79. Li Y, Xu W, McBurney MW, Longo VD. SirT1 Inhibition Reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 2008;8(1):38–48.

    Article  PubMed  Google Scholar 

  80. Sansone L, Reali V, Pellegrini L, Villanova L, Aventaggiato M, Marfe G, et al. SIRT1 silencing confers neuroprotection through IGF-1 pathway activation. J Cell Physiol. 2013;228(8):1754–61.

    Article  PubMed  CAS  Google Scholar 

  81. Milner J. Cellular regulation of SIRT1. Curr Pharm Des. 2009;15(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  82. Naqvi A, Hoffman TA, DeRicco J, Kumar A, Kim CS, Jung SB, et al. A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression. Hum Mol Genet. 2010;19(21):4123–33.

    Article  PubMed  CAS  Google Scholar 

  83. Flachsbart F, Croucher PJ, Nikolaus S, Hampe J, Cordes C, Schreiber S, et al. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol. 2006;41(1):98–102.

    Article  PubMed  CAS  Google Scholar 

  84. Kuningas M, Putters M, Westendorp RG, Slagboom PE, van Heemst D. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J Gerontol A: Biol Med Sci. 2007;62(9):960–5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nuria de Vera for careful reading of the manuscript and to acknowledge the financial support from the Fundació Marato TV3 (110431) and the MICINN (SAF2011-30492).

Conflict of Interest

Valérie Petegnief and Anna M. Planas declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Petegnief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petegnief, V., Planas, A.M. SIRT1 Regulation Modulates Stroke Outcome. Transl. Stroke Res. 4, 663–671 (2013). https://doi.org/10.1007/s12975-013-0277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0277-y

Keywords

Navigation