Skip to main content
Log in

Fatty Acid Methyl Esters and Solutol HS 15 Confer Neuroprotection after Focal and Global Cerebral Ischemia

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

We previously showed that palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Solutol HS15, a clinically approved excipient because it possesses similar fatty acid compositions as PAME/SAME. Asphyxial cardiac arrest (ACA, 6 min) was performed 30 min after PAME/SAME treatment (0.02 mg/kg, IV). Solutol HS15 (2 ml/kg, IP) was injected chronically for 14 days (once daily). Histopathology of hippocampal CA1 neurons was assessed 7 days after ACA. For focal ischemia experiments, PAME, SAME, or Solutol HS15 was administered following reperfusion after 2 h of middle cerebral artery occlusion (MCAO). 2,3,5-Triphenyltetrazolium staining of the brain was performed 24 h after MCAO and the infarct volume was quantified. Following ACA, the number of surviving hippocampal neurons was enhanced by PAME-treated (68 %), SAME-treated (69 %), and Solutol-treated HS15 (68 %) rats as compared to ACA only-treated groups. Infarct volume was decreased by PAME (83 %), SAME (68 %), and Solutol HS15 (78 %) as compared to saline (vehicle) in MCAO-treated animals. PAME, SAME, and Solutol HS15 provide robust neuroprotection in both paradigms of ischemia. This may prove therapeutically beneficial since Solutol HS15 is already administered as a solublizing agent to patients. With proper timing and dosage, administration of Solutol HS15 and PAME/SAME can be an effective therapy against cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lin HW, Liu CZ, Cao D, Chen PY, Chen MF, Lin SZ, et al. Endogenous methyl palmitate modulates nicotinic receptor-mediated transmission in the superior cervical ganglion. Proc Natl Acad Sci U S A. 2008;105(49):19526–31. doi:10.1073/pnas.0810262105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat cell biol. 2001;3(2):193–7. doi:10.1038/35055104.

    Article  CAS  PubMed  Google Scholar 

  3. Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci. 2000;3(1):15–21. doi:10.1038/71090.

    Article  CAS  PubMed  Google Scholar 

  4. Liu L, Stamler JS. NO: an inhibitor of cell death. Cell death differ. 1999;6(10):937–42. doi:10.1038/sj.cdd.4400578.

    Article  CAS  PubMed  Google Scholar 

  5. Bell BA. The neuroprotective effect of calcitonin gene-related peptide following subarachnoid hemorrhage. European CGRP in Subarachnoid Haemorrhage Study Group. Ann N Y Acad Sci. 1995;765:299–300.

    Article  CAS  PubMed  Google Scholar 

  6. Brenneman DE, Eiden LE. Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci U S A. 1986;83(4):1159–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang B, Cao W, Biswal S, Dore S. Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke; a j cereb circ. 2011;42(9):2605–10. doi:10.1161/STROKEAHA.110.607101.

    Article  CAS  Google Scholar 

  8. Lin HW, Defazio RA, Della-Morte D, Thompson JW, Narayanan SV, Raval AP, et al. Derangements of post-ischemic cerebral blood flow by protein kinase C delta. Neuroscience. 2010;171(2):566–76. doi:10.1016/j.neuroscience.2010.08.058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sick TJ, Xu G, Perez-Pinzon MA. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat. Stroke: J Cereb Circ. 1999;30(11):2416–21. discussion 22.

    Article  CAS  Google Scholar 

  10. Bright R, Raval AP, Dembner JM, Perez-Pinzon MA, Steinberg GK, Yenari MA, et al. Protein kinase C delta mediates cerebral reperfusion injury in vivo. J Neurosci: Off J Soc Neurosci. 2004;24(31):6880–8. doi:10.1523/JNEUROSCI.4474-03.2004.

    Article  CAS  Google Scholar 

  11. Ku S, Velagaleti R. Solutol HS15 as a Novel Excipient: Identification of the Need for and Implementation of a US Regulatory Strategy. Pharm Technol. 2010;34(11):108–10.

    Google Scholar 

  12. Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke: J Cereb Circ. 2009;40(9):3121–6. doi:10.1161/STROKEAHA.109.555979.

    Article  CAS  Google Scholar 

  13. Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu Rev Nutr. 2011;31:321–51. doi:10.1146/annurev.nutr.012809.104635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhang W, Li P, Hu X, Zhang F, Chen J, Gao Y. Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Front Biosci: J Virtual Libr. 2012;17:2653–70.

    Google Scholar 

  15. Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res. 2011;2(1):33–41. doi:10.1007/s12975-010-0046-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ley JJ, Vigdorchik A, Belayev L, Zhao W, Busto R, Khoutorova L, et al. Stilbazulenyl nitrone, a second-generation azulenyl nitrone antioxidant, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat: neurobehavior, histopathology, and pharmacokinetics. J Pharmacol Exp Ther. 2005;313(3):1090–100. doi:10.1124/jpet.105.083386.

    Article  CAS  PubMed  Google Scholar 

  17. Lin HW, Della-Morte D, Thompson JW, Gresia VL, Narayanan SV, Defazio RA, et al. Differential effects of delta and epsilon protein kinase C in modulation of postischemic cerebral blood flow. Adv Exp Med Biol. 2012;737:63–9. doi:10.1007/978-1-4614-1566-4_10.

    Article  CAS  PubMed  Google Scholar 

  18. Xu HT, Pan F, Yang G, Gan WB. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci. 2007;10(5):549–51. doi:10.1038/nn1883.

    Article  CAS  PubMed  Google Scholar 

  19. Raval AP, Dave KR, Prado R, Katz LM, Busto R, Sick TJ, et al. Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2005;25(6):730–41. doi:10.1038/sj.jcbfm.9600071.

    Article  CAS  Google Scholar 

  20. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, et al. Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2008;28(5):1040–7. doi:10.1038/sj.jcbfm.9600606.

    Article  CAS  Google Scholar 

  21. Wang ZJ, Li GM, Tang WL, Yin M. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin. 2006;27(2):145–50. doi:10.1111/j.1745-7254.2006.00259.×.

    Article  CAS  PubMed  Google Scholar 

  22. Wang ZJ, Liang CL, Li GM, Yu CY, Yin M. Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacol Sin. 2007;28(3):315–26. doi:10.1111/j.1745-7254.2007.00512.×.

    Article  PubMed  Google Scholar 

  23. Coon JS, Knudson W, Clodfelter K, Lu B, Weinstein RS. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res. 1991;51(3):897–902.

    CAS  PubMed  Google Scholar 

  24. Koob AO, Colby JM, Borgens RB. Behavioral recovery from traumatic brain injury after membrane reconstruction using polyethylene glycol. J Biol Eng. 2008;2:9. doi:10.1186/1754-1611-2-9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Koob AO, Duerstock BS, Babbs CF, Sun Y, Borgens RB. Intravenous polyethylene glycol inhibits the loss of cerebral cells after brain injury. J Neurotrauma. 2005;22(10):1092–111. doi:10.1089/neu.2005.22.1092.

    Article  PubMed  Google Scholar 

  26. Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB. Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J Exp Biol. 2007;210(Pt 8):1455–62. doi:10.1242/jeb.02756.

    Article  CAS  PubMed  Google Scholar 

  27. Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal. 2011;14(10):1853–61. doi:10.1089/ars.2010.3467.

    Article  CAS  PubMed  Google Scholar 

  28. Koob AO, Borgens RB. Polyethylene glycol treatment after traumatic brain injury reduces beta-amyloid precursor protein accumulation in degenerating axons. J Neurosci Res. 2006;83(8):1558–63. doi:10.1002/jnr.20837.

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu S, Simon RP, Graham SH. Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats. Neurosci Lett. 1997;239(2–3):125–7.

    Article  CAS  PubMed  Google Scholar 

  30. Mantawy EM, Tadros MG, Awad AS, Hassan DA, El-Demerdash E. Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicol Appl Pharmacol. 2012;258(1):134–44. doi:10.1016/j.taap.2011.10.016.

    Article  CAS  PubMed  Google Scholar 

  31. El-Demerdash E. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicol Appl Pharmacol. 2011;254(3):238–44. doi:10.1016/j.taap.2011.04.016.

    Article  CAS  PubMed  Google Scholar 

  32. Hickey RW, Ferimer H, Alexander HL, Garman RH, Callaway CW, Hicks S, et al. Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats. Crit Care Med. 2000;28(10):3511–6.

    Article  CAS  PubMed  Google Scholar 

  33. Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404(1–2):170–5. doi:10.1016/j.neulet.2006.05.037.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants NS45676-01, NS054147-01, NS34773, NS073779, American Heart Association-Philips grant 10POST4340011, and AHA-13SDG13950014.

Animal Subjects

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors have no conflict of interest in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Wen Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H.W., Saul, I., Gresia, V.L. et al. Fatty Acid Methyl Esters and Solutol HS 15 Confer Neuroprotection after Focal and Global Cerebral Ischemia. Transl. Stroke Res. 5, 109–117 (2014). https://doi.org/10.1007/s12975-013-0276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0276-z

Keywords

Navigation