Skip to main content
Log in

DARPP-32 to Quantify Intracerebral Hemorrhage-Induced Neuronal Death in Basal Ganglia

  • Protocols
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Quantification of acute brain injury in basal ganglia is essential for mechanistic and therapeutic studies in experimental intracerebral hemorrhage (ICH). Using conventional counting of degenerating cells based on morphological or immunohistochemical criteria, it is hard to define the boundary of the whole lesion area. Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) is a cytosolic protein highly enriched in medium-sized spiny neurons of the striatum. We developed new methods for quantifying lesion area by detecting the difference of the DARPP-32 negative area and the hematoma clot and by measuring DARPP-32 protein level for semi-qualification in rat model of ICH. We found that DARPP-32-negative area around the hematoma was present at day 1, peaked at day 3, and decreased at day 14 after ICH, a time course paralleled by DARPP-32 Western blots. The DARPP-32-negative area matched well with the necrotic area determined using propidium iodide. Treatment with an iron chelator, deferoxamine, attenuated the ICH-induced reduction in DARPP-32 protein levels. These results suggest that DARPP-32 is a simple and quantifiable indicator of ICH-induced neuronal death in basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  2. Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA, et al. Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab. 2000;20(2):396–404.

    Article  PubMed  CAS  Google Scholar 

  3. He Y, Wan S, Hua Y, Keep RF, Xi G. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008;28(5):897–905.

    Article  PubMed  CAS  Google Scholar 

  4. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31.

    Article  PubMed  CAS  Google Scholar 

  5. Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W. DARPP-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res. 2005;65(15):6583–92.

    Article  PubMed  CAS  Google Scholar 

  6. Walaas SI, Aswad DW, Greengard P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature. 1983;301(5895):69–71.

    Article  PubMed  CAS  Google Scholar 

  7. Ouimet CC, Greengard P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. J Neurocytol. 1990;19(1):39–52.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu JP, Xu W, Angulo JA. Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience. 2006;140(2):607–22.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, et al. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab. 2011;31(3):868–80.

    Article  PubMed  CAS  Google Scholar 

  10. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999;30(6):1247–55.

    Article  PubMed  CAS  Google Scholar 

  11. Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. 2004;35(9):2189–94.

    Article  PubMed  Google Scholar 

  12. Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, et al. Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2008;28(3):490–505.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, et al. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke. 2012;43(2):524–31.

    Article  PubMed  Google Scholar 

  14. Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93.

    Article  PubMed  Google Scholar 

  15. Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.

    Article  PubMed  CAS  Google Scholar 

  17. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3.

    Article  PubMed  CAS  Google Scholar 

  18. Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral hemorrhage-induced neuronal death. Neurosurgery. 2001;48(4):875–82. discussion 82-3.

    PubMed  CAS  Google Scholar 

  19. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874(2):123–30.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson KD, Reiner A. Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons. Brain Res. 1991;568(1–2):235–43.

    Article  PubMed  CAS  Google Scholar 

  21. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004;44:269–96.

    Article  PubMed  CAS  Google Scholar 

  22. Ouimet CC, Langley-Gullion KC, Greengard P. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res. 1998;808(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  23. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33(10):2478–84.

    Article  PubMed  Google Scholar 

  24. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44(10):1167–71.

    Article  PubMed  CAS  Google Scholar 

  25. Wang L, Xi G, Keep RF, Hua Y. Iron enhances the neurotoxicity of amyloid beta. Transl Stroke Res. 2012;3(1):107–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants NS-039866, NS-057539, NS-073595, and NS-079157.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Xi, G., Keep, R.F. et al. DARPP-32 to Quantify Intracerebral Hemorrhage-Induced Neuronal Death in Basal Ganglia. Transl. Stroke Res. 4, 130–134 (2013). https://doi.org/10.1007/s12975-012-0232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0232-3

Keywords

Navigation