Skip to main content

Advertisement

Log in

Sodium MRI and the Assessment of Irreversible Tissue Damage During Hyper-Acute Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Sodium MRI (sMRI) has undergone a tremendous amount of technical development during the last two decades that makes it a suitable tool for the study of human pathology in the acute setting within the constraints of a clinical environment. The salient role of the sodium ion during impaired ATP production during the course of brain ischemia makes sMRI an ideal tool for the study of ischemic tissue viability during stroke. In this paper, the current limitations of conventional MRI for the determination of tissue viability during evolving brain ischemia are discussed. This discussion is followed by a summary of the known findings about the dynamics of tissue sodium changes during brain ischemia. A mechanistic model for the explanation of these findings is presented together with the technical requirements for its investigation using clinical MRI scanners. An illustration of the salient features of the technique is also presented using a nonhuman primate model of reversible middle cerebral artery occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7.

    Google Scholar 

  2. LeBihan D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    CAS  Google Scholar 

  3. Dardzinski BJ, et al. Apparent diffusion coefficient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med. 1993;30:318–25.

    PubMed  CAS  Google Scholar 

  4. Benveniste H, Hedlund L, Johnson G. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992;23:746–54.

    PubMed  CAS  Google Scholar 

  5. de Crespigny AJ, Tsuura M, Moseley ME, Kucharczyk J. Perfusion and diffusion MR imaging of thromboembolic stroke. J Magn Reson Imaging. 1993;3(5):746–54.

    PubMed  Google Scholar 

  6. Fisher M. Diffusion and perfusion imaging for acute stroke. Surg Neurol. 1995;43(6):606–9.

    PubMed  CAS  Google Scholar 

  7. Hasegawa Y, Fisher M, Latour L, Dardzinski B, Sotak C. MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia. Neurology. 1994;44:1484–90.

    PubMed  CAS  Google Scholar 

  8. Hossmann K, Hoehn-Berlage M. Diffusion and perfusion MR imaging of cerebral ischemia. Cerebrovasc Brain Metab Rev. 1995;7(3):187–217.

    PubMed  CAS  Google Scholar 

  9. Kucharczyk J, Mintorovitch J, Asgari H, Tsuura M, Moseley M. In vivo diffusion-perfusion magnetic resonance imaging of acute cerebral ischemia. Can J Physiol Pharmacol. 1991;69(11):1719–25.

    PubMed  CAS  Google Scholar 

  10. Kucharczyk J, Mintorovitch J, Asgari HS, Moseley M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med. 1991;19(2):311–5.

    PubMed  CAS  Google Scholar 

  11. Minematsu K, Fisher M, Li L, Sotak CH. Diffusion and perfusion magnetic resonance imaging studies to evaluate a noncompetitive N-methyl-d-aspartate antagonist and reperfusion in experimental stroke in rats. Stroke. 1993;24(12):2074–81.

    PubMed  CAS  Google Scholar 

  12. Minematsu K, Li L, Sotak C, Davis M, Fisher M. Reversible focal ischemia injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke. 1992;23(9):1304–11.

    PubMed  CAS  Google Scholar 

  13. Mintorovitch J, et al. Comparison of diffusion and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn Reson Med. 1991;18:39–50.

    PubMed  CAS  Google Scholar 

  14. Moseley M, Mintorovitch J, Cohen Y, et al. Early detection of ischemic injury: comparison of spectroscopy, diffusion-, T2-, and magnetic susceptibility-weighted MRI in cats. Acta Neurochirurgica Supp. 1990;51:207–9.

    CAS  Google Scholar 

  15. Moseley M, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.

    PubMed  CAS  Google Scholar 

  16. Moseley M, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR. 1990;11:423–9.

    PubMed  CAS  Google Scholar 

  17. Moseley ME, Wendland MF, Kucharczyk J. Magnetic resonance imaging of diffusion and perfusion. Top Magn Reson Imaging. 1991;3(3):50–67.

    PubMed  CAS  Google Scholar 

  18. Perez-Trepichio A, et al. Sensitivity of magnetic resonance diffusion-weighted imaging and regional relationship between the apparent diffusion coefficient and cerebral blood flow in rat focal cerebral ischemia. Stroke. 1995;26:667–75.

    PubMed  CAS  Google Scholar 

  19. Warach S, Dashe J, Edelman R. Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab. 1996;16:53–9.

    PubMed  CAS  Google Scholar 

  20. Albers GW. Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke. 1999;30(10):2230–7.

    PubMed  CAS  Google Scholar 

  21. Albers GW. Advances in intravenous thrombolytic therapy for treatment of acute stroke. Neurology. 2001;57 Suppl 2:S77–81.

    PubMed  CAS  Google Scholar 

  22. Luypaert R, Boujraf S, Sourbron S, Osteaux M. Diffusion and perfusion MRI: basic physics. Eur J Radiol. 2001;38(1):19–27.

    PubMed  CAS  Google Scholar 

  23. Muller TB, et al. Perfusion and diffusion-weighted MR imaging for in vivo evaluation of treatment with U74389G in a rat stroke model. Stroke. 1995;26(8):1453–8.

    PubMed  CAS  Google Scholar 

  24. Neumann-Haefelin T, et al. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke. 1999;30(8):1591–7.

    PubMed  CAS  Google Scholar 

  25. Ostergaard L, et al. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke. 2000;31(5):1097–103.

    PubMed  CAS  Google Scholar 

  26. Ozsunar Y, Sorensen AG. Diffusion- and perfusion-weighted magnetic resonance imaging in human acute ischemic stroke: technical considerations. Top Magn Reson Imaging. 2000;11(5):259–72.

    PubMed  CAS  Google Scholar 

  27. Ueda T, Yuh WT, Taoka T. Clinical application of perfusion and diffusion MR imaging in acute ischemic stroke. J Magn Reson Imaging. 1999;10(3):305–9.

    PubMed  CAS  Google Scholar 

  28. Wityk RJ, et al. Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery. Arch Neurol. 2001;58(4):571–6.

    PubMed  CAS  Google Scholar 

  29. Wu O, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke. 2001;32(4):933–42.

    PubMed  CAS  Google Scholar 

  30. Yenari MA, et al. Diffusion- and perfusion-weighted magnetic resonance imaging of focal cerebral ischemia and cortical spreading depression under conditions of mild hypothermia. Brain Res. 2000;885(2):208–19.

    PubMed  CAS  Google Scholar 

  31. Kidwell C, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9.

    PubMed  CAS  Google Scholar 

  32. Krueger K, et al. Late resolution of diffusion-weighted MRI changes in a patient with prolonged reversible ischemic neurological deficit after thrombolytic therapy. Stroke. 2000;31(11):2715–8.

    PubMed  CAS  Google Scholar 

  33. Betz A, Keep R, Beer M, Ren X. Blood–brain barrier permeability and brain concentration of sodium, potassium, and chloride during focal ischemia. J Cereb Blood Flow Metab. 1994;14(1):29–37.

    PubMed  CAS  Google Scholar 

  34. Hu W, Kharlamov A, Wang Y, Perez-Trepichio AD, Jones SC. Directed sampling for electrolyte analysis and water content of micro-punch samples shows large differences between normal and ischemic rat brain cortex. Brain Res. 2000;868(2):370–5.

    PubMed  CAS  Google Scholar 

  35. Wang Y, et al. Brain tissue is a ticking clock telling time after arterial occlusion in rat focal cerebral ischemia. Stroke. 2000;31:1386–92.

    PubMed  CAS  Google Scholar 

  36. Yang G, Chen S, Kinouchi H, Chan P, Weinstein P. Edema, cation content, and ATPase activity after middle cerebral artery occlusion in rats. Stroke. 1992;23:1331–6.

    PubMed  CAS  Google Scholar 

  37. Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y. Brain edema during ischemia and after restoration of blood flow. Stroke. 1979;10(5):542–7.

    PubMed  CAS  Google Scholar 

  38. Memezawa H, Smith M, Siesjo B. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke. 1992;23(4):552–9.

    PubMed  CAS  Google Scholar 

  39. Hossmann K, Schuier F. Experimental brain infarcts in cats I. Pathophysiological observations. Stroke. 1980;11(6):583–92.

    PubMed  CAS  Google Scholar 

  40. Schuier F, Hossmann K. Experimental brain infarcts in cats. II. Ischemic brain edema. Stroke. 1980;11:593–601.

    PubMed  CAS  Google Scholar 

  41. Asano T, Gotoh O, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat. Part II: alteration of the eicosanoid synthesis profile of brain microvessels. Stroke. 1985;16(1):110–3.

    PubMed  CAS  Google Scholar 

  42. Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat I: the time courses of the brain water, sodium and potassium contents and blood–brain barrier permeability to 125I-albumin. Stroke. 1985;16(1):101–9.

    PubMed  CAS  Google Scholar 

  43. Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat II: alteration of the eicosanoid syntheis profile of brain microvessels. Stroke. 1985;16(1):110–3.

    PubMed  Google Scholar 

  44. Hossmann K, Sakai S, Zimmermann V. Cation activities in reversible ischemia of the cat brain. Stroke. 1977;8(1):77–81.

    PubMed  CAS  Google Scholar 

  45. Menzies S, Betz A, Hoff J. Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neurosurgery. 1993;78:257–66.

    CAS  Google Scholar 

  46. Hatashita S, Hoff J. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke. 1990;21:582–8.

    PubMed  CAS  Google Scholar 

  47. Hatashita S, Hoff JT, Salamat SM. An osmotic gradient in ischemic brain edema. Adv Neurol. 1990;52:85–92.

    PubMed  CAS  Google Scholar 

  48. O'Brien M, Jordan M, Waltz A. Ischemic cerebral edema and the blood–brain barrier. Arch Neurol. 1974;30:461–5.

    PubMed  Google Scholar 

  49. O'Brien MD, Jordan MM, Waltz AG. Ischemic cerebral edema and the blood–brain barrier. Distributions of pertechnetate, albumin, sodium, and antipyrine in brains of cats after occlusion of the middle cerebral artery. Arch Neurol. 1974;30(6):461–5.

    PubMed  Google Scholar 

  50. Siegel B, Studer R, Potchen E. Brain 22 Na uptake in experimental cerebral microembolism. J Neurosurg. 1973;38:739–42.

    PubMed  CAS  Google Scholar 

  51. Young W, Rappaport Z, Chalif D, Flamm E. Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke. 1987;18:751–9.

    PubMed  CAS  Google Scholar 

  52. Fisher M, Sotak CH, Minematsu K, Li L. New magnetic resonance techniques for evaluating cerebrovascular disease. Ann Neurol. 1992;32(2):115–22.

    PubMed  CAS  Google Scholar 

  53. Yang G, Betz A. Reperfusion-induced injury to the blood–brain barrier after middle cerebral artery occlusion in rats. Stroke. 1994;25(8):1658–65.

    PubMed  CAS  Google Scholar 

  54. Little JR. Treatment of acute focal cerebral ischemia with intermittent, low dose mannitol. Neurosurgery. 1979;5(6):687–91.

    PubMed  CAS  Google Scholar 

  55. Kaplan B, Brint S, Tanabe J, et al. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke. 1991;22:1032–9.

    PubMed  CAS  Google Scholar 

  56. Marcoux F, Morawetz R, Crowell R, et al. Differential regional vulnerability in transient focal ischemia. Stroke. 1982;13:339–46.

    PubMed  CAS  Google Scholar 

  57. Jones T, Morawetz R, Crowell R, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54:773–82.

    PubMed  CAS  Google Scholar 

  58. Thulborn KR, Gindin TS, Davis D, Erb P. Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology. 1999;213(1):156–66.

    PubMed  CAS  Google Scholar 

  59. Boada FE, et al. Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. Curr Top Dev Biol. 2005;70:77–101.

    PubMed  CAS  Google Scholar 

  60. Hussain MS, et al. Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol. 2009;66(1):55–62.

    PubMed  Google Scholar 

  61. Thulborn K, Gidin T, Davis D, Erb P. Comprehensive MRI protocol for stroke management: tissue sodium concentration as a measure of tissue viability in a non-human primate model and clinical studies. Radiology. 1999;139:26–34.

    CAS  Google Scholar 

  62. LaVerde G, Nemoto E, Jungreis CA, Tanase C, Boada FE. Serial triple quantum sodium MRI during non-human primate focal brain ischemia. Magn Reson Med. 2007;57(1):201–5.

    PubMed  CAS  Google Scholar 

  63. Goodman JA, Kroenke CD, Bretthorst GL, Ackerman JJ, Neil JJ. Sodium ion apparent diffusion coefficient in living rat brain. Magn Reson Med. 2005;53(5):1040–5.

    PubMed  CAS  Google Scholar 

  64. Jones SC, et al. Stroke onset time using sodium MRI in rat focal cerebral ischemia. Stroke. 2006;37(3):883–8.

    PubMed  CAS  Google Scholar 

  65. Siemkowicz E, Hansen A. Brain extracellular ion composition and EEG activity following 10 Minutes ischemia in normo- and hyperglycemic rats. Stroke. 1981;12(2):236–40.

    PubMed  CAS  Google Scholar 

  66. Siesjo B. Brain Energy Metabolism. New York: Wiley; 1978.

    Google Scholar 

  67. Hilal S, et al. In vivo NMR imaging of sodium-23 in the human head. J Comput Assist Tomogr. 1985;9(1):1–7.

    PubMed  CAS  Google Scholar 

  68. Boada F, Christensen J, Huang-Hellinger F, Reese T, Thulborn K. Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med. 1994;32:219–23.

    PubMed  CAS  Google Scholar 

  69. Schuierer G, Ladebeck R, Barfub H, Hentschel D, Huk W. Sodium-23 imaging of supratentorial lesions at 4.0 T. Magn Reson Med. 1991;22:1–9.

    PubMed  CAS  Google Scholar 

  70. Shimizu T, Naritomi H, Sawada T. Sequential changes on 23Na MRI after cerebral infarction. Neuroradiology. 1993;35:416–9.

    PubMed  CAS  Google Scholar 

  71. Kharrazian R, Jakob PM. Dynamics of 23Na during completely balanced steady-state free precession. J Magn Reson. 2006;179(1):73–84.

    PubMed  CAS  Google Scholar 

  72. Stobbe R, Beaulieu C. Sodium imaging optimization under specific absorption rate constraint. Magn Reson Med. 2008;59(2):345–55.

    PubMed  Google Scholar 

  73. Tsang A, et al. Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging. 2011;33(1):41–7.

    PubMed  Google Scholar 

  74. Boada F, Gillen J, Noll D, Shen G, Thulborn K. Data acquisition and post-processing strategies for fast quantitative sodium imaging. Int J Imaging Syst Technol. 1997;8:544–50.

    Google Scholar 

  75. Boada F, Gillen J, Shen G, Chang S, Thulborn K. Fast three dimensional sodium imaging. Magn Reson Med. 1997;37:706–15.

    PubMed  CAS  Google Scholar 

  76. LaVerde GC, Jungreis CA, Nemoto E, Boada FE. Sodium time course using 23Na MRI in reversible focal brain ischemia in the monkey. J Magn Reson Imaging. 2009;30(1):219–23.

    PubMed  Google Scholar 

  77. Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F. Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology. 2011;77(23):2017–24.

    PubMed  CAS  Google Scholar 

  78. Nagel AM, et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol. 2011;46(9):539–47.

    PubMed  Google Scholar 

  79. Konstandin S, Nagel AM, Heiler PM, Schad LR. Two-dimensional radial acquisition technique with density adaption in sodium MRI. Magn Reson Med. 2011;65(4):1090–6.

    PubMed  Google Scholar 

  80. Matthies C, Nagel AM, Schad LR, Bachert P. Reduction of B(0) inhomogeneity effects in triple-quantum-filtered sodium imaging. J Magn Reson. 2010;202(2):239–44.

    PubMed  CAS  Google Scholar 

  81. Nagel AM, et al. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med. 2009;62(6):1565–73.

    PubMed  Google Scholar 

  82. Qian Y, et al. Sodium imaging of human brain at 7 T with 15-channel array coil. Magn Reson Med. 2012. doi:10.1002/mrm.24192.

  83. Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7T: preliminary study. J Magn Reson. 2012;214(1):360–5.

    PubMed  CAS  Google Scholar 

  84. Kopp C, et al. (23)Na magnetic resonance imaging of tissue sodium. Hypertension. 2012;59(1):167–72.

    PubMed  CAS  Google Scholar 

  85. Juras V, et al. Sodium MR imaging of Achilles tendinopathy at 7 T: preliminary results. Radiology. 2012;262(1):199–205.

    PubMed  Google Scholar 

  86. Lu A, Atkinson IC, Vaughn JT, Thulborn KR. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging. J Magn Reson. 2011;213(1):176–81.

    PubMed  CAS  Google Scholar 

  87. Madelin G, Jerschow A, Regatte RR. Sodium relaxation times in the knee joint in vivo at 7T. NMR Biomed. 2011;25(4):530–7.

    PubMed  Google Scholar 

  88. Harrington MG, Chekmenev EY, Schepkin V, Fonteh AN, Arakaki X. Sodium MRI in a rat migraine model and a NEURON simulation study support a role for sodium in migraine. Cephalalgia. 2011;31(12):1254–65.

    PubMed  Google Scholar 

  89. Heiler PM, et al. Chemical shift sodium imaging in a mouse model of thromboembolic stroke at 9.4 T. J Magn Reson Imaging. 2011;34(4):935–40.

    PubMed  Google Scholar 

  90. Schepkin VD, et al. In vivo magnetic resonance imaging of sodium and diffusion in rat glioma at 21.1 T. Magn Reson Med. 2012;67(4):1159–66.

    PubMed  CAS  Google Scholar 

  91. Jacobs MA, et al. Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat. 2011;128(1):119–26.

    PubMed  CAS  Google Scholar 

  92. Ouwerkerk R. Sodium MRI. Methods Mol Biol. 2011;711:175–201.

    PubMed  CAS  Google Scholar 

  93. Allen SP, et al. Phase-sensitive sodium B1 mapping. Magn Reson Med. 2010;65(4):1125–30.

    PubMed  Google Scholar 

  94. Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR. Sodium inversion recovery MRI of the knee joint in vivo at 7T. J Magn Reson. 2010;207(1):42–52.

    PubMed  CAS  Google Scholar 

  95. Staroswiecki E, et al. In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging. 2010;32(2):446–51.

    PubMed  Google Scholar 

  96. Fleysher L, Oesingmann N, Inglese M. B0 inhomogeneity-insensitive triple-quantum-filtered sodium imaging using a 12-step phase-cycling scheme. NMR Biomed. 2010;23(10):1191–8.

    PubMed  Google Scholar 

  97. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR. Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med. 2010;63(6):1583–93.

    PubMed  Google Scholar 

  98. Qian Y, Stenger VA, Boada FE. Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits. Magn Reson Imaging. 2008;27(5):656–63.

    PubMed  Google Scholar 

  99. Yushmanov VE, et al. Inhomogeneous sodium accumulation in the ischemic core in rat focal cerebral ischemia by 23Na MRI. J Magn Reson Imaging. 2009;30(1):18–24.

    PubMed  Google Scholar 

  100. Yushmanov VE, et al. Sodium mapping in focal cerebral ischemia in the rat by quantitative (23)Na MRI. J Magn Reson Imaging. 2009;29(4):962–6.

    PubMed  Google Scholar 

  101. Horowitz M, Kassam A, Nemoto E, Arimoto J, Jungreis C. An endovascular primate model for the production of a middle cerebral artery ischemic infarction. Interv Neuroradiol. 2001;7:223–8.

    PubMed  CAS  Google Scholar 

  102. Jungreis CA, Nemoto E, Boada F, Horowitz MB. Model of reversible cerebral ischemia in a monkey model. AJNR Am J Neuroradiol. 2003;24(9):1834–6.

    PubMed  Google Scholar 

  103. Kharlamov A, Kim D, Jones S. Reflective change on unprocessed cryostat brain sections and MAP2 immunoreactivity indicate similar ischemic regions. Soc Neurosci Abstr. 2000;26.

  104. Kharlamov A, et al. MAP2 immunostaining in thick sections for early ischemic stroke infarct volume in non-human primate brain. J Neurosci Methods. 2009;182(2):205–10.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research study was supported in part by PHS grant R01 NS44818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando E. Boada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boada, F.E., Qian, Y., Nemoto, E. et al. Sodium MRI and the Assessment of Irreversible Tissue Damage During Hyper-Acute Stroke. Transl. Stroke Res. 3, 236–245 (2012). https://doi.org/10.1007/s12975-012-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0168-7

Keywords

Navigation