Skip to main content

Advertisement

Log in

An Endovascular Perforation Model of Subarachnoid Haemorrhage in Rat Produces Heterogeneous Infarcts that Increase with Blood Load

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid haemorrhage (SAH) is a devastating disease and a major burden on society. Despite this, pharmacological treatment options are limited. Appropriate animal modelling of SAH is essential for the development of neuroprotective drugs, but experimental SAH often fails to produce widespread neuronal loss, as frequently seen in humans. We report that a recently described modification of the endovascular perforation model in rat produced widespread heterogeneous infarcts 72 h after SAH. Cerebral blood flow (CBF) was monitored, with or without intracranial pressure (ICP) measurement, for 1 h after induction of SAH. Blood load size was assessed, and brain injury was quantified at 72 h using histological staining, blood brain barrier breakdown assessment and immunofluorescent imaging of neuronal viability and microglial activation. Results showed that ICP measurement allowed for faster recovery of CBF, potentially reducing brain injury. Larger subarachnoid blood loads predicted more extensive neuronal damage which was easily quantified with the combination of histological and immunohistochemical techniques. Thus, for the investigation of neuroprotective strategies after SAH, the present protocol produces quantifiable, clinically relevant, heterogeneous patterns of infarct due to large blood loads, high ICP and low CBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feigin VL, Lawes CMM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43–53.

    Article  PubMed  Google Scholar 

  2. Nieuwkamp DJ, Setz LE, Algra A, Linn FHH, de Rooij NK, Rinkel GJE. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–42.

    Article  PubMed  Google Scholar 

  3. Dorhout Mees SM, Rinkel GJE, Feigin VL, Algra A, van den Bergh WM, Vermeulen M, et al. Calcium antagonists for aneurysmal subarachnoid hemorrhage. Stroke. 2008;39:514–5.

    Article  Google Scholar 

  4. Prunell G, Mathiesen T, Diemer N, Svendgaard N. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–75.

    PubMed  Google Scholar 

  5. Prunell GF, Mathiesen T, Svendgaard N-A. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13:2553–6.

    Article  PubMed  Google Scholar 

  6. Gules I, Satoh M, Clower BR, Nanda A, Zhang JH. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002;283:H2551–9.

    PubMed  CAS  Google Scholar 

  7. Lee J, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65:331–43.

    Article  PubMed  Google Scholar 

  8. Prunell GF, Svendgaard N-A, Alkass K, Mathiesen T. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.

    Article  PubMed  Google Scholar 

  9. Titova E, Ostrowski R, Zhang J, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res. 2009;31:568–81.

    Article  PubMed  Google Scholar 

  10. van Gijn J, Kerr RS, Rinkel GJE. Subarachnoid haemorrhage. Lancet. 2007;369:306–18.

    Article  PubMed  Google Scholar 

  11. Rabinstein AA, Weigand S, Atkinson JLD, Wijdicks EFM. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2005;36:992–7.

    Article  PubMed  Google Scholar 

  12. Park I-S, Meno JR, Witt CE, Suttle TK, Chowdhary A, Nguyen T-S, et al. Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. J Neurosci Methods. 2008;172:195–200.

    Article  PubMed  Google Scholar 

  13. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.

    Article  PubMed  Google Scholar 

  14. Lee J-Y, Huang D-L, Keep R, Sagher O. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. J Neurosci Methods. 2008;168:358–66.

    Article  PubMed  Google Scholar 

  15. Schatlo B, Dreier J, Gläsker S, Fathi A, Moncrief T, Oldfield E, et al. Report of selective cortical infarcts in the primate clot model of vasospasm after subarachnoid hemorrhage. Neurosurgery. 2011;67:721–8.

    Article  Google Scholar 

  16. Vergouwen MDI, Ilodigwe D, Macdonald RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke. 2011;42:924–9.

    Article  PubMed  Google Scholar 

  17. Simard M, Zhihua G, Woo K, Svetlana I, Cigdem T, Ludmila M, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2008;29:317–30.

    Article  PubMed  Google Scholar 

  18. Heuer GG, Smith MJ, Elliott JP, Winn HR, Leroux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–16.

    Article  PubMed  Google Scholar 

  19. Howells DW, Porritt MJ, Rewell SSJ, O'Collins V, Sena ES, van der Worp HB, et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1412–31.

    Article  PubMed  CAS  Google Scholar 

  20. Lay CC, Davis MF, Chen-Bee CH, Frostig RD. Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke. PLoS One. 2010;5:e11270.

    Article  PubMed  Google Scholar 

  21. Vergouwen MDI, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.

    Article  PubMed  Google Scholar 

  22. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neuro. 2007;3:256–63.

    Article  CAS  Google Scholar 

  23. Vergouwen MDI, Vermeulen M, Coert BA, Stroes ESG, Roos YBWEM. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1761–70.

    Article  PubMed  Google Scholar 

  24. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    Article  PubMed  Google Scholar 

  25. Chaichana KL, Pradilla G, Huang J, Tamargo RJ. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010;73:22–41.

    Article  PubMed  Google Scholar 

  26. Güresir E, Raabe A, Jaiimsin A, Dias S, Raab P, Seifert V, et al. Histological evidence of delayed ischemic brain tissue damage in the rat double-hemorrhage model. J Neurol Sci. 2010;293:18–22.

    Article  PubMed  Google Scholar 

  27. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  PubMed  CAS  Google Scholar 

  28. Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol. 1999;57:563–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Integrative Mammalian Biology (IMB) initiative (A.D.G) and the Medical Research Council (MRC), UK (N.J.R. and S.M.A.) for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Greenhalgh or S. M. Allan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenhalgh, A.D., Rothwell, N.J. & Allan, S.M. An Endovascular Perforation Model of Subarachnoid Haemorrhage in Rat Produces Heterogeneous Infarcts that Increase with Blood Load. Transl. Stroke Res. 3, 164–172 (2012). https://doi.org/10.1007/s12975-011-0124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0124-y

Keywords

Navigation