Skip to main content

Advertisement

Log in

Do Current Animal Models of Intracerebral Hemorrhage Mirror the Human Pathology?

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Although intracerebral hemorrhage (ICH) has no proven treatment, well-designed studies using animal models of ICH may lead to the development of novel therapies. We briefly review current animal models of ICH. Furthermore, we discuss how these models may be utilized and targeted to facilitate translation of preclinical findings to the clinical arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.

    Article  PubMed  Google Scholar 

  2. Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116(16):e391–413.

    Article  PubMed  Google Scholar 

  3. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):e21–181.

    Article  PubMed  Google Scholar 

  4. Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration. Stroke. 1997;28(3):491–9.

    CAS  PubMed  Google Scholar 

  5. Participants NIW. Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshops. Stroke. 2005;36(3):e23–41.

    Article  Google Scholar 

  6. Cheeran B, Cohen L, Dobkin B, Ford G, Greenwood R, Howard D, et al. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair. 2009;23(2):97–107.

    PubMed  Google Scholar 

  7. Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1, 3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology. 2001;40(3):433–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke; a journal of cerebral circulation. 2007;38(8):2262–9.

    CAS  PubMed  Google Scholar 

  9. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke; a journal of cerebral circulation. 2009;40(6):2244–50.

    PubMed  Google Scholar 

  10. Cheung RT. Update on medical and surgical management of intracerebral hemorrhage. Rev Recent Clin Trials. 2007;2(3):174–81.

    Article  PubMed  Google Scholar 

  11. Ariesen MJ, Claus SP, Rinkel GJE, Algra A. Risk factors for intracerebral hemorrhage in the general population. A systematic review. Stroke. 2003;34:2060–6.

    Article  CAS  PubMed  Google Scholar 

  12. Flaherty ML, Woo D, Broderick J. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks and hispanics. Neurology. 2006;66(6):956–7.

    Article  PubMed  Google Scholar 

  13. James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 2008;9(1):139–52.

    Article  PubMed  Google Scholar 

  14. Wagner KR, Broderick JP. In: Lo E, Marwah J, editors. Neuroprotection. Scottsdale: Prominent; 2001. p. 471–508.

    Google Scholar 

  15. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfield M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21(5):801–7.

    CAS  PubMed  Google Scholar 

  16. MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 2008;28(3):516–25.

    Article  CAS  PubMed  Google Scholar 

  17. Gong Y, Xi G, Wan S, Gu Y, Keep RF, Hua Y. Effects of aging on complement activation and neutrophil infiltration after intracerebral hemorrhage. Acta Neurochir. 2008;105:67–70.

    Article  CAS  Google Scholar 

  18. Wasserman JK, Yang H, Schlichter LC. Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats. Eur J Neurosci. 2008;28(7):1316–28.

    Article  PubMed  Google Scholar 

  19. Lee JC, Cho GS, Choi BO, Kim HC, Kim WK. Aging exacerbates intracerebral hemorrhage-induced brain injury. J Neurotrauma. 2009;26(9):1567–76.

    Article  PubMed  Google Scholar 

  20. Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke; a journal of cerebral circulation. 2007;38(12):3289–91.

    PubMed  Google Scholar 

  21. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 2010;30:56–69.

    Article  CAS  PubMed  Google Scholar 

  22. Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke; a journal of cerebral circulation. 2010;41(2):375–82.

    CAS  PubMed  Google Scholar 

  23. Smith EE, Eichler F. Cerebral amyloid angiopathy and lobar intracerebral hemorrhage. Arch Neurol. 2006;63:148–51.

    Article  PubMed  Google Scholar 

  24. Oide T, Takahashi H, Yutani C, Ishihara T, Ikeda S. Relationship between lobar intracerebral hemorrhage and leukoencephalopathy associated with cerebral amyloid angiopathy: clinicopathological study of 64 Japanese patients. Amyloid. 2003;10(3):136–43.

    PubMed  Google Scholar 

  25. Flaherty ML, Kissela B, Woo D, Kleindorfer D, Alwell K, Sekar P, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology. 2007;68(2):116–21.

    Article  CAS  PubMed  Google Scholar 

  26. Lekic T, Tang J, Zhang JH. Rat model of intracerebellar hemorrhage. Acta Neurochir. 2008;105:131–4.

    Article  CAS  Google Scholar 

  27. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke; a journal of cerebral circulation. 1996;27(3):490–7.

    CAS  PubMed  Google Scholar 

  28. Wagner KR, Xi G, Hua Y, Zuccarello M, de Courten-Myers GM, Broderick JP, et al. Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection. J Neurosurg. 1999;90(3):491–8.

    Article  CAS  PubMed  Google Scholar 

  29. Thiex R, Kuker W, Muller HD, Rohde I, Schroder JM, Gilsbach JM, et al. The long-term effect of recombinant tissue-plasminogen-activator (rt-PA) on edema formation in a large-animal model of intracerebral hemorrhage. Neurol Res. 2003;25(3):254–62.

    Article  CAS  PubMed  Google Scholar 

  30. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66(8):1175–81.

    Article  CAS  PubMed  Google Scholar 

  31. Brott TG, Broderick JP, Kothari R, Barsan W, Tomsick T, Sauerbeck L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.

    CAS  PubMed  Google Scholar 

  32. Mauriño J. Hypothesis of intracerebral hemorrhage growth. Stroke. 2003;34:e78.

    Article  PubMed  Google Scholar 

  33. Foerch C, Arai K, Jin G, Park KP, Pallast S, van Leyen K, et al. Experimental model of warfarin-associated intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 2008;39(12):3397–404.

    CAS  PubMed  Google Scholar 

  34. Foerch C, Arai K, Van Cott EM, van Leyen K, Lo EH. Rapid reversal of anticoagulation reduces hemorrhage volume in a mouse model of warfarin-associated intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29(5):1015–21.

    Article  CAS  PubMed  Google Scholar 

  35. Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 2002;33(11):2636–41.

    PubMed  Google Scholar 

  36. Wagner KR, Broderick JP. Hemorrhagic stroke: Pathophysiological mechanisms and treatments. Scottsdale: Prominent; 2001.

    Google Scholar 

  37. Zazulia AR, Diringer MN, Videen TO, Adams RE, Yundt K, Aiyagari V, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21(7):804–10.

    Article  CAS  PubMed  Google Scholar 

  38. Fainardi E, Borrelli M, Saletti A, Schivalocchi R, Azzini C, Cavallo M, et al. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage. Neuroradiology. 2008;50(8):729–40.

    Article  PubMed  Google Scholar 

  39. Zazulia AR, Videen TO, Powers WJ. Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 2009;40(5):1638–43.

    CAS  PubMed  Google Scholar 

  40. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg. 1994;81(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  41. Qureshi AI, Wilson DA, Hanley DF, Traystman RJ. Pharmacologic reduction of mean arterial pressure does not adversely affect regional cerebral blood flow and intracranial pressure in experimental intracerebral hemorrhage. Crit Care Med. 1999;27(5):965–71.

    Article  CAS  PubMed  Google Scholar 

  42. Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 1998;29(12):2580–6.

    CAS  PubMed  Google Scholar 

  43. Wagner KR, Hua Y, Xi G, Dunn RS, Holland SK, Hall NC, et al. Pathophysiologic mechanisms underlying edema development in experimental intracerebral hemorrhage: magnetic resonance studies. Stroke. 1997;28:264.

    Google Scholar 

  44. Adams RE, Diringer MN. Response to external ventricular drainage in spontaneous intracerebral hemorrhage with hydrocephalus. Neurology. 1998;50:519–23.

    CAS  PubMed  Google Scholar 

  45. Li J, McAllister JPI, Shen Y, Wagshul ME, Miller JM, Egnor MR, et al. Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Exp Neur. 2008;211:351–61.

    Article  Google Scholar 

  46. Slobodian I, Krassioukov-Enns D, Del Bigio MR. Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats. Cerebrospinal Fluid Res. 2007;4:9.

    Article  PubMed  Google Scholar 

  47. Del Bigio MR, Bruni JE. Silicone-oil induced hydrocephalus in the rabbit. Childs Nerv Syst. 1991;7(2):79–84.

    Article  PubMed  Google Scholar 

  48. Lodhia KR, Shakui P, Keep RF. Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir. 2006;96:207–11.

    Article  CAS  Google Scholar 

  49. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke; a journal of cerebral circulation. 1999;30(6):1167–73.

    CAS  PubMed  Google Scholar 

  50. Sansing LH, Kaznatcheeva EA, Perkins CJ, Komaroff E, Gutman FB, Newman GC. Edema after intracerebral hemorrhage: correlations with coagulation parameters and treatment. J Neurosurg. 2003;98(5):985–92.

    Article  PubMed  Google Scholar 

  51. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  52. Christensen MC, Mayer SA, Ferran JM, Kissela B. Depressed mood after intracerebral hemorrhage: the FAST trial. Cerebrovasc Dis. 2009;27(4):353–60. Basel, Switzerland.

    Article  PubMed  Google Scholar 

  53. Hartman R, Lekic T, Rojas H, Tang J, Zhang JH. Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res. 2009;1280:148–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Opeolu Adeoye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeoye, O., Clark, J.F., Khatri, P. et al. Do Current Animal Models of Intracerebral Hemorrhage Mirror the Human Pathology?. Transl. Stroke Res. 2, 17–25 (2011). https://doi.org/10.1007/s12975-010-0037-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0037-1

Keywords

Navigation