Skip to main content
Log in

Production of phenolic compounds in hairy root culture of tartary buckwheat (Fagopyrum tataricum Gaertn)

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Fagopyrum tataricum Gaertn (tartary buckwheat) is an excellent medicinal and nutrient-rich crop. It has a high content of rutin and other phenolic compounds. An experiment was conducted to investigate in vitro production of phenolic compounds from hairy root culture of tartary buckwheat. Hairy root growth was promoted by increasing culture time in MS medium. The highest hairy root growth reached up to 11.2 g/l dry weight at 18 d after placement. Transformation was confirmed by PCR using rol genes, rol A (304 bp), B (797 bp), C (550 bp), and D (1035 bp) genes which is transferred into hairy roots from the Ri-plasmid in Agrobacterium rhizogenes and is responsible for the induction of hairy root from plant species. Rutin, quercetin, (−) epicatechin, (−) catechin hydrate, gallic acid, ferulic acid, chlorogenic acid, and caffeic acid were identified both in hairy and wild type roots of tartary buckwheat. The main compound found in the both types of root was epicatechin followed by rutin. The concentration of phenolic compounds in the hairy roots of tartary buckwheat was several-fold higher compared with wild type roots of same species. Our results indicate that hairy root culture of F. tataricum is a valuable alternative approach for the production of phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonafaccia G, Gambelli L, Fabjan N, Kreft I. 2003. Trace elements in flour and bran from commmon and tartary buckwheat. Food Chem. 83: 1–5

    Article  CAS  Google Scholar 

  • Christey MC. 2001. Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev. Biol. Plant 37: 687–700

    Article  CAS  Google Scholar 

  • Christey MC, Braun RH. 2005. Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. Methods Mol. Biol. 286: 47–60

    CAS  PubMed  Google Scholar 

  • Croft KD. 1998. The chemistry and biological effects of flavonoids and phenolic acids. Ann. NY Acad. Sci. 854: 435–442

    Article  CAS  PubMed  Google Scholar 

  • Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabjan N, Rode J, Kosir IJ, Wang Z, Zhang Z, Kreft I. 2003. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 51: 6452–6455

    Article  CAS  PubMed  Google Scholar 

  • Filetici P, Spanò L, Costantino P. 1987. Conserved regions in the T-DNA of different Agrobacterium rhizogenes root inducing plasmid. Plant Mol. Biol. 9: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Golisz A, Furubayashi A, Iqbal Z, Nasir H. 2005. Allelochemicals from buckwheat and tartary buckwheat and practical weed control in the field. In: Proceedings of the 20th Asian-Pacific Weed Science Society Conference (Ho Chi Minh City, Vietnam, 7–11 November 2005). Agriculture Publishing House, Ho Chi Minh City, Vietnam, pp 227–233

    Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T. 2007. Hairy root type plant in vitro systems as sources of bioactive substances. Appl. Microbiol. Biotechnol. 74: 1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Giri A, Narasu MJ. 2000. Transgenic hairy roots: recent trends and applications. Biotechnol. Advs. 18: 1–22

    Article  CAS  Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. 2006a. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol. 24: 403–409

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. 2006b. Hairy root research: recent scenario and exciting prospects. Curr. Opin. Plant Biol. 9: 341–346

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhu K, Zhang H, Yao H. 2007. Purification and charac terization of the antitumor protein from Chinese tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts. J. Agric. Food Chem. 55: 6958–6961

    Article  CAS  PubMed  Google Scholar 

  • Hagels H, Wagenbreth D, Schilcher H. 1995. Phenolic compounds of buckwheat herb and influence of plant and agricultural factors (Fagopyrum esculentum Moench & Fagopyrum tataricum Gartner.). Curr. Adv. Buckwheat Res. 115: 801–809

    Google Scholar 

  • Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ. 1987. New routes to plant secondary products. Biotechnol. 5: 800–804

    Article  CAS  Google Scholar 

  • Kanho H, Yaoya S, Itani T, Nakane T, Kawahara N, Takase Y, Masuda K, Kuroyanagi M. 2004. Glucosylation of phenolic compounds by Pharbitis nil hairy roots: I. Glucosylation of coumarin and flavone derivatives. Biosci. Biotechnol. Biochem. 68: 2032–2039

    Article  CAS  PubMed  Google Scholar 

  • Karakaya S. 2004. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr. 44: 453–464

    Article  CAS  PubMed  Google Scholar 

  • Kitabayashi H, Ujihara A, Hirose T, Minami M. 1995. On the genotypic differences for rutin content in tartary buckwheat, Fagopyrum tataricum Gaertn. Breed Sci. 45: 189–194

    Google Scholar 

  • Lachman J, Hejtmankova A, Orsak M, Pivec V. 2004. Natural antioxidants - important food constituents in human nutrition for healthy life in the beginning century. In Sustain Life - Secure Survival II Conference Papers. _ZU v Praze (Prague, Czech Republic, 2004). Ceska Zemedelska Univerzita v Praze, Prague, pp 1–15

    Google Scholar 

  • Lachman J, Orsak M, Pivec V, Faustusova E. 2000. Content of rutin in selected plant sources. Sci. Agric. Boh. 31: 89–99

    Google Scholar 

  • Lee SY, Cho SI, Park MH, Kim YK, Choi JE, Park SU. 2007. Growth and rutin production in hairy root cultures of buckwheat (Fagopyrum esculentum M.). Prep Biochem Biotechnol. 37: 239–246

    Article  CAS  PubMed  Google Scholar 

  • Linseisen J, Rohrmann S. 2008. Biomarkers of dietary intake of flavonoids and phenolic acids for studying diet-cancer relationship in humans. Eur. J. Nutr. 47: 60–68

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Chen YS, Yang JH, Chiang BH. 2008. Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. J. Agric. Food Chem. 56: 173–178

    Article  CAS  PubMed  Google Scholar 

  • Luczkiewicz M, Kokotkiewicz A. 2005. Genista tinctoria hairy root cultures for selective production of isoliquiritigenin. Z. Naturforsch [C]. 60: 867–875

    CAS  Google Scholar 

  • Mandal S, Mitra A. 2008. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.). Biotechnol. Lett. 30: 1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K. 2001. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J. Mol. Biol. 307: 771–784

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Petit A, David C, Dahl G, Ellis J, Guyon P, Casse-Delbart F, Tempé J. 1983. Further extension of the opine concept: plasmids in Agrobacterium rhizogenes co-operate for opine degradation. Mol Gen. Genet. 190: 204–214

    Article  CAS  Google Scholar 

  • Sircar D, Roychowdhury A, Mitra A. 2007. Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota. J. Plant Physiol. 164: 1358–1366.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK. 2007. Hairy root culture for mass-production of high-value secondary metabolites. Crit. Rev. Biotechnol. 27: 29–43

    Article  CAS  PubMed  Google Scholar 

  • Tapiero H, Tew KD, Ba GN, Mathé G. 2002. Polyphenols: do they play a role in the prevention of human pathologies? Biomed. Pharmacother. 56: 200–207

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D. 1984. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967

    Article  CAS  PubMed  Google Scholar 

  • Xuan TD, Tsuzuki E. 2004. Allelopathic plants: buckwheat (Fagopyrum spp.). Allelopathy J. 13: 137–148.

    Google Scholar 

  • Yao Y, Shan F, Bian J, Chen F, Wang M, Ren G. 2008. D-chiroinositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. J. Agric. Food Chem. 56: 10027–10031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Un Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.K., Li, X., Xu, H. et al. Production of phenolic compounds in hairy root culture of tartary buckwheat (Fagopyrum tataricum Gaertn). J. Crop Sci. Biotechnol. 12, 53–57 (2009). https://doi.org/10.1007/s12892-009-0075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-009-0075-y

Key words

Navigation