Skip to main content
Log in

Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Freshwater habitats of the Neotropics exhibit a gradient from relatively neutral, ion-rich whitewater to acidic, ion-poor blackwater. Closely related species often show complementary distributions among regions with divergent water quality, suggesting that distinct osmoregulatory environments may be a major constraint to fish distribution and an important driver of Neotropical fish diversity. To provide a foundation for further investigation, we reconstructed the gill filament transcriptome of Cichla ocellaris monoculus, a highly exploited Neotropical cichlid that inhabits a broad range of habitats, in experimental conditions meant to mimic opposing endpoints of the whitewater-blackwater gradient. The optimal combined transcriptome contained 185,480 transcripts (> 200 bp) and contained 281.9 Mbp (N50 2,648 bp), from which 17,379 putatively orthologous protein-coding loci were annotated. We observed evidence of utilization of peptide hormone signaling that may have activated signaling cascades to moderate the permeability of the gills in response to these physicochemical challenges. Expression of genes related to paracellular tight junctions and transcellular ion transport indicated responses broadly similar to euryhaline fishes in fresh versus seawater. These results provide a useful foundation for investigating the axes of acclimation or constraint for Neotropical fishes facing increasing habitat modification due to anthropogenic forces, and more broadly the proximate and ultimate modes of diversification in the hyperdiverse Amazon fish fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The raw optimal transcriptome, supplemental bioinformatics methods, and R code have been provided via FigShare (https://doi.org/10.6084/m9.figshare.c.4376105). Raw sequence data have been deposited with NCBI Short Reach Archive (PRJNA839497).

References

  • Araújo, J. D. A., Ghelfi, A. and Val, A. L. (2017). Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? Front. Genet.8,.

  • Barbarossa, V., Bosmans, J., Wanders, N., King, H., Bierkens, M. F. P., Huijbregts, M. A. J. and Schipper, A. M. (2021). Threats of global warming to the world’s freshwater fishes. Nat. Commun.12,.

  • Bogotá-Gregory, J. D., Lima, F. C. T., Correa, S. B., Silva-Oliveira, C., Jenkins, D. G., Ribeiro, F. R., Lovejoy, N. R., Reis, R. E. and Crampton, W. G. R. (2020). Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Sci. Rep.10,.

  • Boursnell, C. and Smith-Unna, R. (2014). Transfuse: Merge transcriptome assemblies (https://github.com/cboursnell/transfuse).

  • Brennan, R. S., Galvez, F. and Whitehead, A. (2015). Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol.218, 1212–1222.

  • Brennan, R. S., Healy, T. M., Bryant, H. J., La, M. Van, Schulte, P. M. and Whitehead, A. (2018). Integrative Population and Physiological Genomics Reveals Mechanisms of Adaptation in Killifish. Mol. Biol. Evol.35, 2639–2653.

  • Breves, J. P., Watanabe, S., Kaneko, T., Hirano, T. and Grau, E. G. (2010a). Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl- cotransporter in hypophysectomized Mozambique tilapia. Am. J. Physiol. Regul. Integr. Comp. Physiol.299, 702–710.

  • Breves, J. P., Fox, B. K., Pierce, A. L., Hirano, T. and Grau, E. G. (2010b). Gene expression of growth hormone family and glucocorticoid receptors, osmosensors, and ion transporters in the gill during seawater acclimation of mozambique tilapia, Oreochromis mossambicus. J. Exp. Zool. Part A Ecol. Genet. Physiol.313 A, 432–441.

  • Breves, J. P., Seale, A. P., Helms, R. E., Tipsmark, C. K., Hirano, T. and Grau, E. G. (2011). Dynamic gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia. Comp. Biochem. Physiol. - A Mol. Integr. Physiol.158, 194–200.

  • Breves, J. P., Seale, A. P., Moorman, B. P., Lerner, D. T., Moriyama, S., Hopkins, K. D. and Grau, E. G. (2014). Pituitary control of branchial NCC, NKCC and Na(+), K (+)-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus. J. Comp. Physiol. B.184, 513–23.

  • Breves, J. P., Inokuchi, M., Yamaguchi, Y., Seale, A. P., Hunt, B. L., Watanabe, S., Lerner, D. T., Kaneko, T. and Grau, E. G. (2016). Hormonal regulation of aquaporin 3: Opposing actions of prolactin and cortisol in tilapia gill. J. Endocrinol.230, 325–337.

  • Chang, I. C. and Hwang, P. P. (2004). Cl- uptake mechanism in freshwater-adapted tilapia (_Oreochromis mossambicus_). Physiol. Biochem. Zool.77, 406–414.

  • Chasiotis, H., Kolosov, D., Bui, P. and Kelly, S. P. (2012). Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review. Respir. Physiol. Neurobiol.184, 269–281.

  • De Queiroz, L. J., Torrente-Vilara, G., Quilodran, C., da Costa Doria, C. R. and Montoya-Burgos, J. I. (2017). Multifactorial genetic divergence processes drive the onset of speciation in an Amazonian fish. PLoS One12,.

  • Ferlazzo, A., Carvalho, E. S. M., Gregorio, S. F., Power, D. M., Canario, A. V. M., Trischitta, F. and Fuentes, J. (2012). Prolactin regulates luminal bicarbonate secretion in the intestine of the sea bream (Sparus aurata L.). J. Exp. Biol.215, 3836–3844.

  • Fiol, D. F. and Kültz, D. (2007). Osmotic stress sensing and signaling in fishes. FEBS J.274, 5790–5798.

  • Fiol, D. F., Sanmarti, E., Sacchi, R. and Kültz, D. (2009). A novel tilapia prolactin receptor is functionally distinct from its paralog. J. Exp. Biol.212, 2007–2015.

  • Freitas, C. E. C., Siqueira-Souza, F. K., Humston, R. and Hurd, L. E. (2013). An initial assessment of drought sensitivity in Amazonian fish communities. Hydrobiologia705,.

  • Fu, L., Niu, B., Zhu, Z., Wu, S. and Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152.

  • Furch, K. (1984). Water chemistry of the Amazon basin: The distribution of chemical elements among freshwaters. In The Amazon Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin (ed. Sioli, H.), pp. 167–199. W. Junk, Dordrecht.

  • Furukawa, F., Watanabe, S., Inokuchi, M. and Kaneko, T. (2011). Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities. Comp. Biochem. Physiol. Part A158, 468–476.

  • Furukawa, F., Watanabe, S., Kakumura, K., Hiroi, J. and Kaneko, T. (2014). Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. AJP Regul. Integr. Comp. Physiol.307, R1303–R1312.

  • Gibbons, T. C., Metzger, D. C. H., Healy, T. M. and Schulte, P. M. (2017). Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats. Mol. Ecol.26, 2711–2725.

  • Gonzalez, R. J., Wilson, R. W., Wood, C. M., Patrick, M. L. and Val, A. L. (1998). Diverse strategies of ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol. Biochem. Zool.75, 37–47.

  • Guh, Y.-J., Lin, C.-H. and Hwang, P.-P. (2015). Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI J.14, 627–659.

  • Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, F., Hasegawa, M., Wakabayashi, S., Shigekawa, M., Chang, M.-H., Romero, M. F., et al. (2003). Mechanism of acid adaptation of a fish lining in a pH 3.5 lake. Am. J. Physiol. - Regul. Integr. Comp. Physiol.284, R1199-1212.

  • Hughes, L. C., Somoza, G. M., Nguyen, B. N., Bernot, J. P., González-Castro, M., Díaz de Astarloa, J. M. and Ortí, G. (2017). Transcriptomic differentiation underlying marine-to-freshwater transitions in the South American silversides Odontesthes argentinensis and O. bonariensis (Atheriniformes). Ecol. Evol.7, 5258–5268.

  • Hwang, P.-P., Lee, T.-H. and Lin, L.-Y. (2011). Ion regulation in fish gills: recent progress in thecellular and molecular mechanisms. Am. J. Physiol. - Regul. Integr. Comp. Physiol.301, R28–R47.

  • Köhler, S., Buffam, I., Jonsson, A. and Bishop, K. (2002). Photochemical and microbial processing of stream and soil water dissolved organic matter in a boreal forested catchment in northern Sweden. Aquat. Sci.64, 269–281.

  • Kullander, S. O. and Ferreira, E. J. G. (2006). A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei : Cichlidae). Ichthyol. Explor. Freshwaters17, 289–398.

  • Kultz, D. (2012). The Combinatorial Nature of Osmosensing in Fishes. Physiology27, 259–275.

  • Kultz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol.218, 1907–1914.

  • Lam, S. H., Lui, E. Y., Li, Z., Cai, S., Sung, W. K., Mathavan, S., Lam, T. J. and Ip, Y. K. (2014). Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics15,.

  • Li, Z., Lui, E. Y., Wilson, J. M., Ip, Y. K., Lin, Q., Lam, T. J. and Lam, S. H. (2014). Expression of key ion transporters in the gill and esophageal- gastrointestinal tract of euryhaline mozambique tilapia oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water. PLoS One9,.

  • Lin, C.-H., Kuan, W.-C., Liao, B.-K., Deng, A.-N., Tseng, D.-Y. and Hwang, P.-P. (2016). Environmental and cortisol-mediated control of Ca2 + uptake in tilapia (Oreochromis mossambicus). J. Comp. Physiol. B186, 323–332.

  • Liu, J., Li, G., Chang, Z., Yu, T., Liu, B., McMullen, R., Chen, P. and Huang, X. (2016). BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data. PLoS Comput. Biol.12,.

  • Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W. and Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. Science (80-. ).319,.

  • Marengo, J. A. and Espinoza, J. C. (2016). Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol.36,.

  • Matsuo, A. Y. O. and Val, A. L. (2007). Acclimation to humic substances pre- vents whole body sodium loss and stimulates branchial cal- cium uptake capacity in the cardinal tetras, Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J. Fish Biol.70, 989–1000.

  • McCormick, S. D. and Bradshaw, D. (2006). Hormonal control of salt and water balance in vertebrates. Gen. Comp. Endocrinol.147, 3–8.

  • Parks, S. K., Tresguerres, M. and Goss, G. G. (2008). Theoretical considerations underlying Na_+_ uptake mechanisms in freshwater fishes. Comp. Biochem. Physiol. C-Toxicology Pharmacol.148, 411–418.

  • Perry, S. F. (1997). THE CHLORIDE CELL:Structure and Function in the Gills of Freshwater Fishes. Annu. Rev. Physiol.59, 325–347.

  • Postel, R. and Sonnenberg, A. (2012). Carbonic Anhydrase 5 regulates acid-base homeostasis in Zebrafish. PLoS One7,.

  • Prunet, P., Sturm, A. and Milla, S. (2006). Multiple corticosteroid receptors in fish: From old ideas to new concepts. Gen. Comp. Endocrinol.147, 17–23.

  • Reinecke, M., Schmid, A., Ermatinger, R. and Loffing-Cueni, D. (1997). Insulin-like growth factor I in the teleost Oreochromis mossambicus, the tilapia: gene sequence, tissue expression, and cellular localization. Endocrinology138, 3613–9.

  • Reis, R. E., Kullander, S. O. and Ferraris, C. J. (2003). Checklist of the Freshwater Fishes of South and Central America. 729.

  • Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P. and Rocha, L. A. (2016). Fish biodiversity and conservation in South America. J. Fish Biol.89, 12–47.

  • Sakamoto, T. and McCormick, S. D. (2006). Prolactin and growth hormone in fish osmoregulation. Gen. Comp. Endocrinol.147, 24–30.

  • Saparov, S. M., Liu, K., Agre, P. and Pohl, P. (2007). Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem.282, 5296–5301.

  • Shepherd, B. S., Sakamoto, T., Nishioka, R. S., Richman, N. H., Mori, I., Madsen, S. S., Chen, T. T., Hirano, T., Bern, H. a and Grau, E. G. (1997). Somatotropic actions of the homologous growth hormone and prolactins in the euryhaline teleost, the tilapia, Oreochromis mossambicus. Proc. Natl. Acad. Sci. U. S. A.94, 2068–72.

  • Sioli, H. (1984). The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin.

  • Tang, C.-H. and Lee, T.-H. (2011). Ion-Deficient Environment Induces the Expression of Basolateral Chloride Channel, ClC-3-Like Protein, in Gill Mitochondrion-Rich Cells for Chloride Uptake of the Tilapia Oreochromis mossambicus. Physiol. Biochem. Zool.84, 54–67.

  • Tipsmark, C. K., Breves, J. P., Seale, A. P., Lerner, D. T., Hirano, T. and Grau, E. G. (2011). Switching of NaC, KC-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J. Endocrinol.209, 237–244.

  • Tipsmark, C. K., Breves, J. P., Rabeneck, D. B., Trubitt, R. T., Lerner, D. T. and Grau, E. G. (2016). Regulation of gill claudin paralogs by salinity, cortisol and prolactin in Mozambique tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. -Part A Mol. Integr. Physiol.199, 78–86.

  • Velan, A., Hulata, G., Ron, M. and Cnaani, A. (2011). Comparative time-course study on pituitary and branchial response to salinity challenge in Mozambique tilapia (Oreochromis mossambicus) and Nile tilapia (O. niloticus). Fish Physiol. Biochem.37, 863–873.

  • Velotta, J. P., Wegrzyn, J. L., Ginzburg, S., Kang, L., Czesny, S., O’Neill, R. J., McCormick, S. D., Michalak, P. and Schultz, E. T. (2017). Transcriptomic imprints of adaptation to fresh water: parallel evolution of osmoregulatory gene expression in the Alewife. Mol. Ecol.26, 831–848.

  • Whitehead, A., Roach, J. L., Zhang, S. and Galvez, F. (2011). Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natinal Acad. Sci. USA108, 6193–6198.

  • Willis, S. C. (2017). One species or four? Yes!⋯and, no. Or, arbitrary assignment of lineages to species obscures the diversification processes of Neotropical fishes. PLoS One12,.

  • Willis, S. C., Nunes, M. S., Montaña, C. G., Farias, I. P. and Lovejoy, N. R. (2007). Systematics, biogeography, and evolution of the Neotropical peacock basses Cichla (Perciformes: Cichlidae). Mol. Phylogenet. Evol.44, 291–307.

  • Willis, S. C., Nunes, M. S., Montana, C. G., Farias, I. P., Orti, G. and Lovejoy, N. R. (2010). The Casiquiare River acts as a corridor between the Amazonas and Orinoco River basins: biogeographic analysis of the genus Cichla. Mol. Ecol.19, 1014–1030.

  • Willis, S. C., Macrander, J., Farias, I. P. and Ortí, G. (2012). Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus cichla) using multi-locus data. BMC Evol. Biol.12, 96.

  • Willis, S. C., Farias, I. P. and Ortí, G. (2014). Testing mitochondrial capture and deep coalescence in amazonian cichlid fishes (Cichlidae: Cichla). Evolution (N. Y).68, 256–268.

  • Wilson, J. M., Laurent, P., Tufts, B. L., Benos, D. J., Donowitz, M., Vogl, A. W., Randall, D. J., Alper, S. L., Stuart-Tilley, A., Biemesderfer, D., et al. (2000). NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J. Exp. Biol.203, 2279–96.

  • Winemiller, K. O. (2001). Ecology of peacock cichlids (Cichla spp.) in Venezuela. J. Aquaric. Aquat. Sci.9, 93–112.

  • Winemiller, K. O. and Willis, S. C. (2010). Biogeography of the Vaupes Arch and Casiquiare River: Barriers and Passages between the Amazon and Orinoco. In Historical Biogeography of Neotrpical Freshwater Fishes (ed. Albert, J.) and Reis, R. E.), pp. 225–242. Berkeley, CA: University of California Press.

  • Winemiller, K. O., López-Fernández, H., Taphorn, D. C., Nico, L. and Barbarino-Duque, A. (2008). Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. J. Biogeogr.35, 1551–1563.

  • Winemiller, K. O., Kelso-Winemiller, L. C. and Montaña, C. G. (2021). Peacock Bass: Diversity, Ecology and Conservation. London, U.K.: Academic Press.

  • Wood, A. W., Duan, C. and Bern, H. A. (2005). Insulin-like growth factor signaling in fish. Int. Rev. Cytol.243, 215–285.

  • Wood, C. M., Robertson, L. M., Johannsson, O. E. and Val, A. L. (2014). Mechanisms of Na + uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi,Hemigrammus rhodostomus, and Moenkhausia diktyota). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol.184, 877–890.

  • Wright, P. A. and Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J. Exp. Biol.212, 2303–2312.

  • Yamaguchi, Y., Breves, J. P., Haws, M. C., Lerner, D. T., Grau, E. G. and Seale, A. P. (2018). Acute salinity tolerance and the control of two prolactins and their receptors in the Nile tilapia (Oreochromis niloticus) and Mozambique tilapia (O. mossambicus): A comparative study. Gen. Comp. Endocrinol.257, 168–176.

  • Zihni, C., Mills, C., Matter, K. and Balda, M. S. (2016). Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol.17, 564–580.

Download references

Acknowledgements

The authors appreciate support of the Texas A&M University-Corpus Christi High Performance Computing Cluster. A.L. Val and C.M. Wood, and an anonymous reviewer graciously provided comments on a previous version of this manuscript. Figure 2 was created with assistance of P.V. Dimens. Experimental procedures with animals were approved by the Texas A&M University Institutional Animal Care and Use Committee, 2013-0099.

Funding

This project and personnel were supported by the Estate of George and Caroline Kelso via the International Sportfish Fund (KW), the TAMU diversity fellowship program (DES), and the College of Science and Engineering at TAMU-CC (SCW, CMH, DSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart C. Willis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willis, S.C., Saenz, D.E., Wang, G. et al. Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions. Conservation Genet Resour 14, 391–401 (2022). https://doi.org/10.1007/s12686-022-01284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-022-01284-1

Keywords

Navigation