Skip to main content
Log in

The completed chloroplast genome of Ostrya trichocarpa

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The whole chloroplast genome nucleotide sequence of Ostrya trichocarpa has been characterized from Illumina pair-end sequencing. The completed genome is 159,122 bp in length, with 121 genes annotated, including 86 protein-coding, 29 tRNA and 6 rRNA genes. The majority of gene occurred as a single copy, while 14 gene species occur in two copies. The circular genome exhibits a typical chloroplast genome structure comprising a large single copy region of 88,158 bp, a small single copy region of 18,758 bp and a pair of inverted repeats of 26,103 and 26,106 bp. The overall AT content of O. trichocarpa chloroplast genome is 63.54%, while the corresponding values of the LSC, SSC and IR regions are 65.73, 62.81 and 60.95%, respectively. Based on the SSR analysis, a total of 85 microsatellites with a length of at least 10 bp were detected in the O. trichocarpa genome. Further, phylogenetic analysis suggested that O. trichocarpa is closely related to Ostrya rehderiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cheng J, Yang J, Liu P (1992) Timbers of China.

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fang D, Wang YS (1983) A new Ostrya species from Guangxi. Guihaia 3(3):189–191

    Google Scholar 

  • Huang DI, Cronk QCB (2015) Plann: a command-line application for annotating plastome sequences. Appl Plant Sci 3:1500026

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Li PC, Cheng SH. 1979. Betulaceae. In: Kuang Ko-zen & Li Pei-chun., eds., Fl. Reipubl Popularis Sin. 21: 44–137

  • Li Y, Bi H, Liu B et al (2016) The complete chloroplast genome of Ostrya rehderiana[J]. Mitochondr DNA Part A 27(6):4536–4537

    Article  CAS  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Zhang D, Liu S et al. (2016) Species delimitation of Chinese hop-hornbeams based on molecular and morphological evidence[J]. Ecol Evol 6(14):4731–4740

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng S, Yang G, Liu C, Yu Z, Zhai M (2015) The complete chloroplast genome of the Juglans regia (Juglandales: Julandaceae). Mitochondrial DNA 28(3):407–408

    Article  PubMed  CAS  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK et al (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis[J]. Tree Genet Genomes 3(1):49–59

    Article  Google Scholar 

  • Shaw K, Stritch L, Rivers M, Roy S, Wilson B, Govaerts R (2014) The red list of Betulaceae. BGCI, Richmond

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Lu P, Luo Z (2013) GMATo: a novel tool for the identification and analysis of microsatellites in large genomes[J]. Bioinformation 9(10):541

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JB, Li DZ, Li HT (2014) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour 14:1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Zhang H (2006) Analysis on physical mechanics property of ostrya rehderiana wood[J]. J Zhejiang For Sci Technol 26(1):52

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the Fundamental Research Funds for the Central Universities (lzujbky-2016-k04); the Fok Ying Tung Education Foundation (151105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Qiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Supplementary material 2 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xie, X., Yan, B. et al. The completed chloroplast genome of Ostrya trichocarpa . Conservation Genet Resour 10, 579–581 (2018). https://doi.org/10.1007/s12686-017-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-017-0869-z

Keywords

Navigation