Skip to main content

Advertisement

Log in

New polymorphic microsatellite markers of the endangered meadow viper (Vipera ursinii) identified by 454 high-throughput sequencing: when innovation meets conservation

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The Next Generation Sequencing (pyrosequencing) technique allows rapid, low-cost development of microsatellite markers. We have used this technology to develop 14 polymorphic loci for the endangered meadow viper (Vipera ursinii). Based on 37,000 reads, we developed primers for 66 microsatellite loci and found that 14 were polymorphic. The number of alleles per locus varies from 1 to 12 (for 30 individuals tested). At a cost of about 1/3 that of a normal microsatellite development, we were able to define enough microsatellite markers to conduct population genetic studies on a non-model species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abdelkrim J, Robertson B, Stanton JA, Gemmell N (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192

    Article  PubMed  CAS  Google Scholar 

  • Agrimi U, Luiselli L (1992) Feeding strategies of the Viper Vipera ursinii ursinii (Reptilia, Viperidae) in the Apennines. Herpetolog J 2:37–42

    Google Scholar 

  • Baron JP, Ferrière R, Clobert J, Saint Girons H (1996) Life history of Vipera ursinii ursinii at Mont-Ventoux (France). C R Acad Sci Ser III 319:57–69

    Google Scholar 

  • Carlsson M, Isaksson M, Hoggren M, Tegelström H (2003) Characterization of polymorphic microsatellite markers in the adder, Vipera berus. Mol Ecol Notes 3:73–75

    Article  CAS  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  PubMed  CAS  Google Scholar 

  • Ferchaud A-L, Lyet A, Cheylan M, Arnal V, Baron JP, Mongelard C, Ursenbacher S (2011) High genetic differentiation among French populations of the Orsini’s meadow viper (Vipera ursinii ursinii) based on mitochondrial and microsatellite data: implications for conservation management. J Hered 102:67–78

    Article  PubMed  CAS  Google Scholar 

  • Ferrière R, Sarrazin F, Legendre S, Baron JP (1996) Matrix population models applied to viability analysis and conservation: theory and practice using the ULM software. Acta Oecol Int J Ecol 17:629–656

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F- statistics. J Hered 86:485–486

    Google Scholar 

  • Luiselli L, Filippi E, Di Lena E (2007) Ecological relationships between sympatric Vipera aspis and Vipera ursinii in high-altitude habitats of central Italy. J Herpetol 41:378–384

    Article  Google Scholar 

  • Mullin SJ, Seigel RA (2009) Snakes: ecology and conservation. Cornell University, New York

    Google Scholar 

  • Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M, Wingfield B (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46:217–223

    Article  PubMed  CAS  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  PubMed  CAS  Google Scholar 

  • Ujvari B, Madsen T, Kotenko T, Olsson M, Shine R, Wittzell H (2002) Low genetic diversity threatens imminent extinction for the Hungarian meadow viper (Vipera ursinii rakosiensis). Biol Conserv 105:127–130

    Article  Google Scholar 

  • Ujvari B, Madsen T, Olsson M (2005) Discrepancy in mitochondrial and nuclear polymorphism in meadow vipers (Vipera ursinii) questions the unambiguous use of mtDNA in conservation studies. Amphib Reptil 26:287–292

    Article  Google Scholar 

  • Ursenbacher S, Monney J-C, Fumagalli L (2009) Limited genetic diversity and high differentiation among the remnant adder (Vipera berus) populations in the Swiss and French Jura Mountains. Conserv Genet 10:303–315

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jean-Pierre Baron and Arnaud Lyet for providing the samples and thank Matthieu Raemy and Hans-Peter Rusterholz (University of Basel) for help in the laboratory. Polymorphism was tested through the molecular genetic analysis technical facilities of the IFR119 ‘‘Montpellier Environnement Biodiversité’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Ursenbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, C., Ferchaud, AL., Geiser, C. et al. New polymorphic microsatellite markers of the endangered meadow viper (Vipera ursinii) identified by 454 high-throughput sequencing: when innovation meets conservation. Conservation Genet Resour 3, 589–592 (2011). https://doi.org/10.1007/s12686-011-9411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-011-9411-x

Keywords

Navigation