Skip to main content
Log in

Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C)

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The health and productivity of coral reefs is underpinned by the symbiosis between corals and dinoflagellates (Symbiodinium spp.). To enable population genetic analyses of Symbiodinium spp, required for coral reef conservation, seven microsatellite loci were isolated from Symbiodinium clade C from the Great Barrier Reef, Australia. These microsatellite primer pairs consistently amplified between 1 and 8 alleles per coral host colony, with mean number of alleles ranging from 1.9 to 4.0 and generally high genetic diversities (Shannon’s Index = 0.71–2.76). The novel microsatellite loci amplified between 1 and 10 alleles in four other C strains, but did not amplify a D strain. Three of six previously published clade C microsatellite loci amplified 1–6 alleles in two or more of five C strains tested. The primers and cross amplifications presented here therefore provide a useful tool for elucidating the population genetic structure of clade C Symbiodinium populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Baker A (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–689

    Article  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol 273:2305–2312

    Article  Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high performance algal endosymbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  PubMed  Google Scholar 

  • Drew EA (1972) The biology and physiology of algal–invertebrate symbiosis. II. The density of algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75

    Article  Google Scholar 

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Method Enzymol 395:202–222

    Article  CAS  Google Scholar 

  • Howells E, van Oppen MJH, Willis B (2009) High genetic differentiation and cross-shelf patterns of genetic diversity among great barrier reef populations of Symbiodinium. Coral Reefs 28:215–225

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond B Biol 275:1359–1365

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284(14):7–161

    Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbiosis shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Magalon H, Samadi S, Richard M, Adjeroud M, Veuille M (2004) Development of coral and zooxanthella-specific microsatellites in three species of Pocillopora (Cnidaria, Scleractinia) from French Polynesia. Mol Ecol Notes 4:206–208

    Article  CAS  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Pettay DT, LaJeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belong to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20

    Article  CAS  PubMed  Google Scholar 

  • Santos SR, Gutierrez-Rodriguez C, Lasker HR, Coffroth MA (2003) Symbiodinium sp. associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic diversity and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral–dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity. Proc R Soc Lond B Biol 268:1759–1767

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Marine and Tropical Science Research Facility, the ARC Centre of Excellence for Coral Reef Studies and the Queensland Government. We thank the following for collection of coral samples: A. Lutz (coral sperm), R. Berkelmans (A. millepora samples), P. Warner (S. hystrix GBR samples), T. Cooper (S. hystrix WA samples). We also thank J. Doyle and A. Muirhead for assistance with DNA extractions and Symbiodinium strain determination. Samples collected to characterize microsatellites were collected under permit number G06/15571.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Line Kolind Bay.

Additional information

Line K. Bay and Emily J. Howells have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bay, L.K., Howells, E.J. & van Oppen, M.J.H. Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C). Conservation Genet Resour 1, 199 (2009). https://doi.org/10.1007/s12686-009-9048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12686-009-9048-1

Keywords

Navigation