Skip to main content
Log in

Catalytic Performance Comparison of Shape-Dependent Nanocrystals and Oriented Ultrathin Films of Pt4Cu Alloy in the Formic Acid Oxidation Process

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Research efforts continue to focus on the development of viable and cost-effective fuel cell catalysts with minimized Pt content. This work presents a comparative study between Pt4Cu nanocubes and nano-octahedra as well as Pt4Cu (100) and (111) thin films used as catalysts for formic acid oxidation. This paper introduces a novel synthetic method for Pt4Cu nano-octahedra, and it also demonstrates for the first time the use of surface limited redox replacement of Pb underpotentially deposited layer for epitaxial growth of thin alloy films. Overall, the nanoparticle catalysts exhibit superior performance in terms of durability when compared to their thin film counterparts but feature nearly fivefold lower activity. As a result, it was determined that both types of catalysts accumulate nearly equal charge density in their lifespan. In terms of crystallographic orientation, the results indicate that the nanocubes and Pt4Cu (100) thin films outperform the nano-octahedra and Pt4Cu (111) thin films in terms of durability but feature equal to slightly lower activity. This significant difference in durability of catalysts with different crystallographic orientation is attributed to interplay of passivation (from CO poisoning and Pt oxidation) and dissolution of Pt. When compared to pure Pt catalysts (nanoparticles and thin films), all of the Pt4Cu catalysts in this work exhibit superior performance toward formic acid oxidation in terms of activity and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Antolini, Mater Chem Phys 78, 563 (2003)

    Article  CAS  Google Scholar 

  2. M. Fayette, Y. Liu, D. Bertrand, J. Nutariya, N. Vasiljevic, N. Dimitrov, Langmuir 27, 5650 (2011)

    Article  CAS  Google Scholar 

  3. K. Uosaki, S. Ye, H. Naohara, Y. Oda, T. Haba, T. Kondo, J Phys Chem B 101, 7566 (1997)

    Article  CAS  Google Scholar 

  4. A.D. Polli, T. Wagner, T. Gemming, M. Rühle, Surf Sci 448, 279 (2000)

    Article  CAS  Google Scholar 

  5. J. Solla-Gullon, P. Rodriguez, E. Herrero, A. Aldaz, J.M. Feliu, Phys Chem Chem Phys: PCCP 10, 1359 (2008)

    Article  CAS  Google Scholar 

  6. C. Rice, R.I. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J Power Sources 111, 83 (2002)

    Article  CAS  Google Scholar 

  7. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, J Power Sources 155, 95 (2006)

    Article  CAS  Google Scholar 

  8. C. Lamy, S. Rousseau, E. Belgsir, C. Coutanceau, J. Leger, Electrochim Acta 49, 3901 (2004)

    Article  CAS  Google Scholar 

  9. W. Weihua, T. Xuelin, C. Kai, C. Gengyu, Coll Surf A: Phys Chem Eng Asp 273, 35 (2006)

    Article  Google Scholar 

  10. T. He, E. Kreidler, L. Xiong, E. Ding, J Power Sources 165, 87 (2007)

    Article  CAS  Google Scholar 

  11. H. Yang, L. Dai, D. Xu, J. Fang, S. Zou, Electrochim Acta 55, 8000 (2010)

    Article  CAS  Google Scholar 

  12. D. Xu, S. Bliznakov, Z. Liu, J. Fang, N. Dimitrov, Andgew Chem 49, 1282 (2010)

    CAS  Google Scholar 

  13. P. Strasser, J Comb Chem 10, 216 (2008)

    Article  CAS  Google Scholar 

  14. M. Oezaslan, P. Strasser, J Power Sources 196, 5240 (2011)

    Article  CAS  Google Scholar 

  15. F. Hasche, M. Oezaslan, P. Strasser, ChemCatChem 3, 1805 (2011)

    CAS  Google Scholar 

  16. J. Zeng, J. Lee, J Power Sources 140, 268 (2005)

    Article  CAS  Google Scholar 

  17. T.C. Deivaraj, W. Chen, J.Y. Lee, J Mater Chem 13, 2555 (2003)

    Article  CAS  Google Scholar 

  18. B. Pawelec, S. Damyanova, K. Arishtirova, J.L.G. Fierro, L. Petrov, Appl. Cat. A 323, 188 (2007)

    Article  CAS  Google Scholar 

  19. Y.W. Lee, A.R. Ko, S.B. Han, H.S. Kim, K.W. Park, Phys Chem Chem Phys: PCCP 13, 5569 (2011)

    Article  CAS  Google Scholar 

  20. V. Petkov, S.D. Shastri, Phys Rev B, 81, 165428 (2010)

    Google Scholar 

  21. R. Yang, J. Leisch, P. Strasser, M.F. Toney, Chem Mater 22, 4712 (2010)

    Article  CAS  Google Scholar 

  22. J.J. Mallett, U. Bertocci, J.E. Bonevich, T.P. Moffat, J Electrochem Soc 156, D531 (2009)

    Article  CAS  Google Scholar 

  23. J. Rose, J Magn Magn Mater 155, 348 (1996)

    Article  Google Scholar 

  24. D. van der Vliet, C. Wang, M. Debe, R. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Electrochim Acta 56, 8695 (2011)

    Article  Google Scholar 

  25. J. Solla-Gullón, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, A. Aldaz, Elchem Commun 8, 189 (2006)

    Google Scholar 

  26. S.-C. Chang, L.-W.H. Leung, M.J. Weaver, J Phys Chem 94, 6013 (1990)

    Article  CAS  Google Scholar 

  27. N.M. Markovic, H.A. Gasteiger, P.N. Ross Jr., X. Jiange, I. Villegas, M.J. Weaver, Electrochim Acta 40, 91 (1995)

    Article  CAS  Google Scholar 

  28. R. Parsons, T. Vandernoot, J Electroanal Chem 257, 9 (1988)

    Article  CAS  Google Scholar 

  29. S.G. Sun, J. Clavilier, A. Bewick, J Electroanal Chem 240, 147 (1988)

    Article  CAS  Google Scholar 

  30. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic, J Phys Chem B 109, 22701 (2005)

    Article  CAS  Google Scholar 

  31. H.-F. Waibel, M. Kleinert, L.A. Kibler, D.M. Kolb, Electrochim Acta 47, 1461 (2002)

    Article  CAS  Google Scholar 

  32. K.A. Friedrich, A. Marmann, U. Stimming, W. Unkauf, R. Vogel, J. Fresenius Anal Chem 358, 163 (1997)

    Article  CAS  Google Scholar 

  33. S. Strbac, S. Petrovic, R. Vasilic, J. Kovac, A. Zalar, Z. Rakocevic, Electrochim Acta 53, 998 (2007)

    Article  CAS  Google Scholar 

  34. S.R. Brankovic, J.X. Wang, R.R. Adzic, Surf Sci 474, L173 (2001)

    Article  CAS  Google Scholar 

  35. R. Vasilic, N. Dimitrov, Elchem Sol St Lett 8, C173 (2005)

    Article  CAS  Google Scholar 

  36. R. Vasilic, L.T. Viyannalage, N. Dimitrov, J Electrochem Soc 153, C648 (2006)

    Article  CAS  Google Scholar 

  37. L.T. Viyannalage, R. Vasilic, N. Dimitrov, J Phys Chem C 111, 4036 (2007)

    Article  CAS  Google Scholar 

  38. M.F. Mrozek, Y. Xie, M.J. Weaver, Anal Chem 73, 5953 (2001)

    Article  CAS  Google Scholar 

  39. Y. Jin, Y. Shen, S. Dong, J Phys Chem B 108, 8142 (2004)

    Article  CAS  Google Scholar 

  40. Y.G. Kim, J.Y. Kim, D. Vairavapandian, J.L. Stickney, J Phys Chem B 110, 17998 (2006)

    Article  CAS  Google Scholar 

  41. D. Gokcen, S.-E. Bae, S.R. Brankovic, J Electrochem Soc 157, D582 (2010)

    Article  CAS  Google Scholar 

  42. D. Gokcen, S.-E. Bae, S.R. Brankovic, Electrochim Acta 56, 5545 (2011)

    Article  CAS  Google Scholar 

  43. S. Yang, N.Y. Park, J.W. Han, C. Kim, S.C. Lee, H. Lee, Chem Commun 48, 257 (2012)

    Article  CAS  Google Scholar 

  44. V. Mazumder, S. Sun, J Am Chem Soc 131, 4588 (2009)

    Article  CAS  Google Scholar 

  45. J. Zhang, H.Z. Yang, K.K. Yang, J. Fang, S.Z. Zou, Z.P. Luo, H. Wang, I.T. Bae, D.Y. Jung, Adv Funct Mater 20, 3727 (2010)

    Article  CAS  Google Scholar 

  46. J. Zhang, J. Fang, J Am Chem Soc 131, 18543 (2009)

    Article  CAS  Google Scholar 

  47. D. Strmcnik, D. Tripkovic, D. van der Vliet, V. Stamenkovic, N.M. Marković, Elchem Commun 10, 1602 (2008)

    CAS  Google Scholar 

  48. B.N. Grgur, N.M. Markovic, C.A. Lucas, P.N. Ross, J Serb Chem Soc 66, 785 (2001)

    CAS  Google Scholar 

  49. A.B. Ofstad, M.S. Thomassen, J.L. Gomez de la Fuente, F. Seland, S. Møller-Holst, S. Sunde, J Electrochem Soc 157, B621 (2010)

    Article  CAS  Google Scholar 

  50. P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J Electrochem Soc 152, A2256 (2005)

    Article  Google Scholar 

  51. X. Wang, R. Kumar, D.J. Myers, Elchem Sol St Lett 9, A225 (2006)

    Article  CAS  Google Scholar 

  52. X. Zhang, H.M. Galindo, H.F. Garces, P. Baker, X. Wang, U. Pasaogullari, S.L. Suib, T. Molter, J Electrochem Soc 157, B409 (2010)

    Article  CAS  Google Scholar 

  53. X. Ge, R. Wang, P. Liu, Y. Ding, Chem Mater 19, 5827 (2007)

    Article  CAS  Google Scholar 

  54. D.A. McCurry, M. Kamundi, M. Fayette, F. Wafula, N. Dimitrov, ACS Appl Mater Interfaces 3, 4459 (2011)

    Article  CAS  Google Scholar 

  55. J.M. Feliu, J.M. Orts, R. Gomez, A. Aldaz, J. Clavilier, J Electroanal Chem 372, 265 (1994)

    Article  CAS  Google Scholar 

  56. N.M. Markovic, B.N. Grgur, P.N. Ross, J Phys Chem B 101, 5405 (1997)

    Article  CAS  Google Scholar 

  57. F.J.G. d Dios, R. Gomez, J.M. Feliu, Langmuir 21, 7439 (2005)

    Article  Google Scholar 

  58. N. Garcia-Araez, J.J. Lukkien, M.T.M. Koper, J.M. Feliu, J Electroanal Chem 588, 1 (2006)

    Article  CAS  Google Scholar 

  59. N. de-los-Santos-Álvarez, L.R. Alden, E. Rus, H. Wang, F.J. DiSalvo, H.D. Abruña, J Electroanal Chem 626, 14 (2009)

    Article  Google Scholar 

  60. S.-M. Hwang, J.E. Bonevich, J.J. Kim, T.P. Moffat, J Electrochem Soc 158, D307 (2011)

    Article  CAS  Google Scholar 

  61. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim Acta 53, 3181 (2008)

    Article  CAS  Google Scholar 

  62. K. Kinoshita, J Electrochem Soc 137, 845 (1990)

    Article  CAS  Google Scholar 

  63. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Science 315, 493 (2007)

    Article  CAS  Google Scholar 

  64. D.C. Johnson, D.T. Napp, S. Bruckenstein, Electrochim Acta 15, 1493 (1970)

    Article  CAS  Google Scholar 

  65. D.A.J. Rand, R. Woods, J Electroanal Chem 35, 209 (1972)

    Article  CAS  Google Scholar 

  66. A. Yadav, A. Nishikata, T. Tsuru, Electrochim Acta 52, 7444 (2007)

    Article  CAS  Google Scholar 

  67. S. Mitsushima, Y. Koizumi, S. Uzuka, K.-I. Ota, Electrochim Acta 54, 455 (2008)

    Article  CAS  Google Scholar 

  68. S. Mitsushima, S. Kawahara, K.-I. Ota, N. Kamiya, J Electrochem Soc 154, B153 (2007)

    Article  CAS  Google Scholar 

  69. V. Komanicky, K.C. Chang, A. Menzel, N.M. Markovic, H. You, X. Wang, D. Myers, J Electrochem Soc 153, B446 (2006)

    Article  CAS  Google Scholar 

  70. A. Capon, R. Parsons, J Electroanal Chem 45, 205 (1973)

    Article  CAS  Google Scholar 

  71. A. Cuesta, G. Cabello, C. Gutierrez, M. Osawa, Phys Chem Chem Phys: PCCP 13, 20091 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L.B., M.F., and N.D. acknowledge the financial support of the National Science Foundation, Division of Materials Research (DMR-0742016). L.B. acknowledges the financial support of the Clifford D. Clark Fellowship, Y.W and J.F. acknowledge the financial support of General Motor LLC., and B.M., J.Z., D.X., and J.F. acknowledge the financial support of NSF DMR-0731382.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Fang or N. Dimitrov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supporting information item. (DOCX 2663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromberg, L., Fayette, M., Martens, B. et al. Catalytic Performance Comparison of Shape-Dependent Nanocrystals and Oriented Ultrathin Films of Pt4Cu Alloy in the Formic Acid Oxidation Process. Electrocatalysis 4, 24–36 (2013). https://doi.org/10.1007/s12678-012-0109-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0109-y

Keywords

Navigation