Skip to main content
Log in

The Effect of Noncovalent Interactions on the HOR, ORR, and HER on Ru, Ir, and Ru0.50Ir0.50 Metal Surfaces in Alkaline Environments

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The role of noncovalent interactions in the hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) on Ru, Ir, and Ru0.5Ir0.5 electrodes is studied in alkaline solution containing K+, Li+, and Ba2+ cations. We found that noncovalent interaction between hydrated cations and covalently bonded OHad increases in the same order as specific charge density of the corresponding cation (K+ < Li+ < Ba2+). This interaction is also found to cause an increase in the density of OHad·····Mn+(H2O) x clusters in the compact part of double layer. The trend in interaction strengths is inversely proportional to the activity of the HOR and ORR, which suggests that the clusters “block” the metal active sites necessary for the adsorption of H2 and O2. In the case of the HER, however, we demonstrate that the activity is directly proportional to the strength of these noncovalent interactions. To explain this behavior, we suggest that the hydrated cations affect the rate of the water dissociation step which increases in the order K+ < Li+ < Ba2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Amadelli, N. Markovic, R. Adzic, E. Yeager, J Electroanal Chem Interfacial Electrochem 159, 391–412 (1983)

    Article  CAS  Google Scholar 

  2. R. Adzic, A. Tripkovic, R. Atanasoski, J Electroanal Chem Interfacial Electrochem 94, 231–235 (1978)

    Article  CAS  Google Scholar 

  3. R.R. Adzic, D.N. Simic, A.R. Despic, D.M. Drazic, J Electroanal Chem Interfacial Electrochem 65, 587–601 (1975)

    Article  CAS  Google Scholar 

  4. N.M. Markovic, R.R. Adzic, B.D. Cahan, E.B. Yeager, J Electroanal Chem 377, 249–259 (1994)

    Article  CAS  Google Scholar 

  5. R.R. Adzic, N.M. Markovic, J Electroanal Chem Interfacial Electrochem 102, 263–270 (1979)

    Article  CAS  Google Scholar 

  6. R.R. Adzic, N.M. Markovic, V.B. Vesovic, J Electroanal Chem Interfacial Electrochem 165, 105–120 (1984)

    Article  CAS  Google Scholar 

  7. P.W. Faguy, N. Markovic, R.R. Adzic, C.A. Fierro, E.B. Yeager, J Electroanal Chem Interfacial Electrochem 289, 245–262 (1990)

    Article  CAS  Google Scholar 

  8. N.M. Markovic, N.S. Marinkovic, R.R. Adzic, J Electroanal Chem Interfacial Electrochem 241, 309–328 (1988)

    Article  CAS  Google Scholar 

  9. H.A. Gasteiger, N.M. Markovic, Science 324, 48–49 (2009)

    Article  CAS  Google Scholar 

  10. W. Vielstich, A. Lamm, H. Gasteiger, Handbook of fuel cells: fundamentals and survey of systems, vol. 1 (Wiley, New York, 2003)

    Google Scholar 

  11. D. Strmcnik, D.F. van der Vliet, K.C. Chang, V. Komanicky, K. Kodama, H. You, V.R. Stamenkovic, N.M. Markovic, J Phys Chem Lett 2, 2733–2736 (2011)

    Article  CAS  Google Scholar 

  12. R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Science 334, 1256–1260 (2011)

    Article  CAS  Google Scholar 

  13. D. Strmcnik, K. Kodama, D. Van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Markovic, Nat Chem 1, 466–472 (2009)

    Article  CAS  Google Scholar 

  14. R. Subbaraman, D. Strmcnik, V. Stamenkovic, N.M. Markovic, J Phys Chem C 114, 8414–8422 (2010)

    Article  CAS  Google Scholar 

  15. M. Escudero-Escribano, M.E. Zoloff Michoff, E.P.M. Leiva, N.M. Markovic, C. Gutierrez, A. Cuesta, Chemphyschem 12, 2230–2234 (2011)

    Article  CAS  Google Scholar 

  16. H. Angerstein-Kozlowska, B.E. Conway, B. Barnett, J. Mozota, J Electroanal Chem Interfacial Electrochem 100, 417–446 (1979)

    Article  CAS  Google Scholar 

  17. B.E. Conway, Progr Surf Sci 16, 1–137 (1984)

    Article  CAS  Google Scholar 

  18. J.M. Feliu, M.J. Valls, A. Aldaz, M. Climent, J Electroanal Chem 345, 475–481 (1993)

    Article  CAS  Google Scholar 

  19. N. Garcia, V. Climent, J.M. Orts, J.M. Feliu, A. Aldaz, Chemphyschem 5, 1221–1227 (2004)

    Article  CAS  Google Scholar 

  20. G. Jerkiewicz, Progr Surf Sci 57, 137–186 (1998)

    Article  CAS  Google Scholar 

  21. B. Pierozynski, S. Morin, B.E. Conway, J Electroanal Chem 467, 30–42 (1999)

    Article  CAS  Google Scholar 

  22. N.M. Markovic, P.N. Ross, Surf Sci Rep 45, 117–229 (2002)

    Article  CAS  Google Scholar 

  23. N.M. Markovic, S.T. Sarraf, H.A. Gasteiger, P.N. Ross, J Chem Soc Faraday Trans 92, 3719–3725 (1996)

    Article  CAS  Google Scholar 

  24. B.B. Blizanac, P.N. Ross, N.M. Markovic, Electrochim Acta 52, 2264–2271 (2007)

    Article  CAS  Google Scholar 

  25. B.B. Blizanac, V. Stamenkovic, N.M. Markovic, Zeitschrift fur Physikalische Chemie 221, 1379–1391 (2007)

    Article  CAS  Google Scholar 

  26. C.A. Lucas, P. Thompson, Y. Grunder, N.M. Markovic, Electrochem Commun. 1205–1208 (2011)

  27. K. Muller-Dethlefs, P. Hobza, Chem Rev 100, 143–168 (2000)

    Article  Google Scholar 

  28. D.J. Miller, J.M. Lisy, J Am Chem Soc 130, 15381–15392 (2008)

    Article  CAS  Google Scholar 

  29. D.J. Miller, J.M. Lisy, J Am Chem Soc 130, 15393–15404 (2008)

    Article  CAS  Google Scholar 

  30. G.S. Manku, Theoretical principles of inorganic chemistry (Tata McGraw-Hill Education, Noida, 1980)

    Google Scholar 

  31. E.V. Anslyn, D.A. Dougherty, Modern physical organic chemistry (University Science Books, California, 2006)

    Google Scholar 

  32. A.V. Ruban, H.L. Skriver, J.K. Norskov, Phys Rev B 59, 15990–16000 (1999)

    Article  Google Scholar 

  33. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Nat Mater 5, 909–913 (2006)

    Article  CAS  Google Scholar 

  34. R. Parsons, Trans Faraday Soc 54, 1053–1063 (1958)

    Article  CAS  Google Scholar 

  35. S. Trasatti, J Electroanal Chem Interfacial Electrochem 39, 163–184 (1972)

    Article  CAS  Google Scholar 

  36. D.S. Strmcnik, P. Rebec, M. Gaberscek, D. Tripkovic, V. Stamenkovic, C. Lucas, N.M. Markovic, J. Phys, Chemistry C 111, 18672–18678 (2007)

    CAS  Google Scholar 

  37. N.M. Markovic, P.N. Ross Jr., J Electrochem Soc 141, 2590–2597 (1994)

    Article  CAS  Google Scholar 

  38. D.B. Sepa, M.V. Vojnovic, M. Stojanovic, A. Damjanovic, J Electroanal Chem Interfacial Electrochem 218, 265–272 (1987)

    Article  CAS  Google Scholar 

  39. F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, R.R. Adzic, J Phys Chem C 111, 404–410 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Science, U.S. Department of Energy, under contract DE-AC0-06CH11357 and the Chemical Sciences and Engineering Division at Argonne National Laboratory. RS and ND would like to thank the Argonne Postdoctoral Fellowships for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Markovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilovic, N., Subbaraman, R., Strmcnik, D. et al. The Effect of Noncovalent Interactions on the HOR, ORR, and HER on Ru, Ir, and Ru0.50Ir0.50 Metal Surfaces in Alkaline Environments. Electrocatalysis 3, 221–229 (2012). https://doi.org/10.1007/s12678-012-0100-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0100-7

Keywords

Navigation