Skip to main content
Log in

High Antibacterial Effect of Impregnated Nanofiber Mats with a Green Nanogel Against Major Human Pathogens

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Opportunistic environmental pathogens, particularly bacteria, could enter the body through injured skin; therefore, developing green dressing with growth inhibitory effects on bacteria is crucial. In this study, the essential oil of Zataria multiflora was used as a natural antibacterial agent, and its nanoemulsion-based nanogel was prepared to maximize potency and stability. The essential oil was first formulated into nanoemulsion with a 74.9 ± 5-nm droplet size and droplet size distribution (SPAN) of 0.966 ± 0.01. By adding carbomer 940 (1.5% w/v) to the nanoemulsion, a nanogel was prepared. This nanogel was then impregnated on the chitosan-polycaprolactone’s electrospun nanofibers to facilitate its topical application. The prepared prototype’s antibacterial effect (named NGelNFs) was investigated using the textures standard method (ATCC100). Interestingly, the NGelNFs fully (~ 100%) inhibited the growth of four important human pathogens, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Green constituents, complete inhibition effect on bacterial growth, and the straightforward and repeatable preparation method are the main strengths of this designed drug system. Therefore, the prepared prototype, NGelNFs, could be used as a natural and potent antibacterial dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes, M. E., & Brown, M. L. (2011). A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treatment. Open Fish Science Journal, 4(1), 40–48.

    Article  Google Scholar 

  2. Esposito, S., Ascione, T., & Pagliano, P. (2019). Management of bacterial skin and skin structure infections with polymicrobial etiology. Expert Review of Anti-Infective Therapy, 17(1), 17–25.

    Article  Google Scholar 

  3. Johnson, S., Goddard, P., Iliffe, C., Timmins, B., Rickard, A., Robson, G., & Handley, P. (2002). Comparative susceptibility of resident and transient hand bacteria to para-chloro-meta-xylenol and triclosan. Journal of Applied Microbiology, 93(2), 336–344.

    Article  Google Scholar 

  4. Zhen, X., Lundborg, C. S., Sun, X., Hu, X., & Dong, H. (2019). Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrobial Resistance and Infection Control, 8(1), 137.

    Article  Google Scholar 

  5. Poulakou, G., Lagou, S., & Tsiodras, S. (2019). What’s new in the epidemiology of skin and soft tissue infections in 2018? Current Opinion in Infectious Diseases, 32(2), 77–86.

    Article  Google Scholar 

  6. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–A review. Food and Chemical Toxicology, 46(2), 446–475.

    Article  Google Scholar 

  7. Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10(10), 813–829.

    Article  Google Scholar 

  8. Bassetti, M., Peghin, M., Castaldo, N., & Giacobbe, D. R. (2019). The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opinion on Drug Safety, 18(8), 635–650.

    Article  Google Scholar 

  9. de Matos, S. P., Lucca, L. G., & Koester, L. S. (2019). Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta, 195, 204–214.

    Article  Google Scholar 

  10. Osanloo, M., Abdollahi, A., Valizadeh, A., & Abedinpour, N. (2020). Antibacterial potential of essential oils of Zataria multiflora and Mentha piperita, micro-and nano-formulated forms. Iranian Journal of Microbiology, 12(1), 43–51.

    Google Scholar 

  11. Lambert, R., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–462.

    Article  Google Scholar 

  12. Guarda, A., Rubilar, J. F., Miltz, J., & Galotto, M. J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. International Journal of Food Microbiology, 146(2), 144–150.

    Article  Google Scholar 

  13. Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines, 3(4), 25.

    Article  Google Scholar 

  14. Osanloo, M., Assadpour, S., Mehravaran, A., Abastabar, M., & Akhtari, J. (2018). Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review. Current Medicine Mycology, 4(4), 31–36.

    Google Scholar 

  15. Mishra, R. K., Ha, S. K., Verma, K., & Tiwari, S. K. (2018). Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advance Mater Devices, 3(3), 263–288.

    Google Scholar 

  16. Sasmal, P., & Datta, P. (2019). Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications. Journal of Drug Delivery Science and Technology, 52, 559–567.

    Article  Google Scholar 

  17. Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290–301.

    Article  Google Scholar 

  18. Christy, P. N., Basha, S. K., Kumari, V. S., Bashir, A. K. H., Maaza, M., Kaviyarasu, K., Arasu, M. V., Al-Dhabi, N. A., & Ignacimuthu, S. (2020). Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. Journal of Drug Delivery Science and Technology, 55, 101452.

    Article  Google Scholar 

  19. Wang, M., Hai, T., Feng, Z., Yu, D.-G., Yang, Y., & Annie, B. S. (2019). The relationships between the working fluids, process characteristics and products from the modified coaxial electrospinning of zein. Polymers, 11(8), 1287.

    Article  Google Scholar 

  20. Yang, J., Wang, K., Yu, D.-G., Yang, Y., Bligh, S. W. A., & Williams, G. R. (2020). Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering: C, 111, 110805.

    Article  Google Scholar 

  21. Zhao, K., Wang, W., Yang, Y., Wang, K., & Yu, D.-G. (2019). From Taylor cone to solid nanofiber in tri-axial electrospinning: Size relationships. Results Physic, 15, 102770.

    Article  Google Scholar 

  22. Yu, D. G., Wang, M., Li, X., Liu, X., Zhu, L. M., & Annie Bligh, S. W. (2019). Multifluid electrospinning for the generation of complex nanostructures. Wires Nanomedicine Nanobiology, 12(3), e1601.

    Google Scholar 

  23. Cui, H., Zhang, C., Li, C., & Lin, L. (2019). Preparation and antibacterial activity of Litsea cubeba essential oil/dandelion polysaccharide nanofiber. Industrial Crops and Products, 140, 111739.

    Article  Google Scholar 

  24. Osanloo, M., Arish, J., & Sereshti, H. (2019). Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: A systematic review. Polymer Bulletin, 77(11), 6085–6104.

    Article  Google Scholar 

  25. Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58.

    Article  Google Scholar 

  26. Goy, R. C., Britto, D. D., & Assis, O. B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241–247.

    Article  Google Scholar 

  27. Janmohammadi, M., & Nourbakhsh, M. (2019). Electrospun polycaprolactone scaffolds for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(9), 527–539.

    Article  Google Scholar 

  28. Unalan, I., Endlein, S. J., Slavik, B., Buettner, A., Goldmann, W. H., Detsch, R., & Boccaccini, A. R. (2019). Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics, 11(11), 570.

    Article  Google Scholar 

  29. Kravanja, G., Primožič, M., Knez, Ž., & Leitgeb, M. (2019). Chitosan-based (Nano) materials for novel biomedical applications. Molecules, 24(10), 1960.

    Article  Google Scholar 

  30. Abdollahi, A., Zarenezhad, E., Osanloo, M., Ghaznavi, G., & Khalili, P. M. (2020). Promising antibacterial activity of a mat of polycaprolactone nanofibers impregnated with a green nanogel. Nanomedicine Research Journal, 5(2), 192–201.

    Google Scholar 

  31. Kelidari, H. R., Moemenbellah-Fard, M. D., Morteza-Semnani, K., Amoozegar, F., Shahriari-Namadi, M., Saeedi, M., & Osanloo, M. (2020). Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. Journal of Parasitic Diseases. https://doi.org/10.1007/s12639-020-01281-x.

  32. Yang, X., Chen, X., & Wang, H. (2009). Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromolecules, 10(10), 2772–2778.

    Article  Google Scholar 

  33. Wiegand, C., Abel, M., Ruth, P., Elsner, P., & Hipler, U. C. (2015). In vitro assessment of the antimicrobial activity of wound dressings: Influence of the test method selected and impact of the pH. Journal of Materials Science. Materials in Medicine, 26(1), 5343.

    Article  Google Scholar 

  34. Zare, Y., Park, S. P., & Rhee, K. Y. (2019). Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau–Yasuda model. Results Physic, 13, 102245.

    Article  Google Scholar 

  35. Moemenbellah-Fard, M. D., Abdollahi, A., Ghanbariasad, A., & Osanloo, M. (2020). Antibacterial and leishmanicidal activities of Syzygium aromaticum essential oil versus its major ingredient, eugenol. Flavour and Fragrance Journal, 35(5), 534–540.

    Article  Google Scholar 

  36. Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evidence-based Complementary and Alternative Medicine, 2014, 1–14.

    Google Scholar 

  37. Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environmental Health Perspectives, 116(3), 292–296.

    Article  Google Scholar 

  38. Van der Schueren, L., De Meyer, T., Steyaert, I., Ceylan, Ö., Hemelsoet, K., Van Speybroeck, V., & De Clerck, K. (2013). Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohydrate Polymers, 91(1), 284–293.

    Article  Google Scholar 

  39. Unalan, I., Slavik, B., Buettner, A., Goldmann, W., Frank, G., & Boccaccini, A. R. (2019). Physical and antibacterial properties of peppermint essential oil loaded poly (ɛ-caprolactone)(PCL) electrospun fiber mats for wound healing. Frontiers in Bioengineering and Biotechnology, 7, 346.

    Article  Google Scholar 

  40. Khoshnevisan, K., Maleki, H., Samadian, H., Doostan, M., & Khorramizadeh, M. R. (2019). Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. International Journal of Biological Macromolecules, 140, 1260–1268.

    Article  Google Scholar 

  41. Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., Miceli, E., & Calderón, M. (2015). Stimuli-responsive nanogel composites and their application in nanomedicine. Chemical Society Reviews, 44(17), 6161–6186.

    Article  Google Scholar 

  42. Nurkeeva, Z. S., Khutoryanskiy, V. V., Mun, G. A., Sherbakova, M. V., Ivaschenko, A. T., & Aitkhozhina, N. A. (2004). Polycomplexes of poly (acrylic acid) with streptomycin sulfate and their antibacterial activity. European Journal of Pharmaceutics and Biopharmaceutics, 57(2), 245–249.

    Article  Google Scholar 

  43. Karthikeyan, K., Durgadevi, R., Saravanan, K., Shivsankar, K., Usha, S., & Saravanan, M. (2012). Formulation of bioadhesive carbomer gel incorporating drug-loaded gelatin microspheres for periodontal therapy. Tropical Journal of Pharmaceutical Research, 11(3), 335–343.

    Google Scholar 

  44. Hussain, A., Samad, A., Singh, S. K., Ahsan, M. N., Haque, M. W., Faruk, A., & Ahmed, F. J. (2016). Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Delivery, 23(2), 642–647.

    Article  Google Scholar 

  45. Ardekani, N. T., Khorram, M., Zomorodian, K., Yazdanpanah, S., Veisi, H., & Veisi, H. (2019). Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. International Journal of Biological Macromolecules, 125, 743–750.

    Article  Google Scholar 

Download references

Availability of Data and Material

Okay.

Code Availability

Not applicable.

Funding

This study was supported by Fasa University of Medical Sciences (grant no. 97152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Osanloo.

Ethics declarations

Ethics Approval

This study has been ethically approved (IR.FUMS.REC.1397.142).

Informed Consent

As this research did not involve in vivo or human study; thus, no constant form was used.

Consent to Participate

This research did not involve in vivo or human study; thus, no constant form was used.

Consent for Publication

Okay.

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, A., Mirzaei, E., Amoozegar, F. et al. High Antibacterial Effect of Impregnated Nanofiber Mats with a Green Nanogel Against Major Human Pathogens. BioNanoSci. 11, 549–558 (2021). https://doi.org/10.1007/s12668-021-00860-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00860-3

Keywords

Navigation