Skip to main content
Log in

Milk Allergen Detection: Sensitive Label-Free Voltammetric Immunosensor Based on Electropolymerization

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

We present in this work, first time in literature, a voltammetric label-free biosensor for detection of alpha lactalbumin (α-LB) in meal samples. Food allergy concern necessitates strict regulations in food labelling and innovative monitoring strategies for prevention of sepsis-related death. As major food allergens, dietary samples often contain whey proteins, including α-LB as one of the key allergenic. Available detection methods for α-LB are based on successive labelling steps and hence have long assay times with limited sensitivity. The new detection method presented here is based on capturing of α-LB via entrapped α-LB antibody (α-LB-Ab) through electropolymerization of polypyrrole (PPy) and then measuring the conductivity decrease by differential pulse voltammetry (DPV). This new label-free voltammetric biosensor for α-LB exhibits the best limit of detection (0.19 fg/mL) published so far in literature, with high selectivity and capability to quantify α-LB in real milk samples too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Elaine L. Food allergies. 2010;32.

  2. Nowak-Wegrzyn, A., Conover-Walker, M., & RA W. (2001). Food-allergic reactions in schools and preschools. Archives of Pediatrics & Adolescent Medicine, 155, 790–795.

    Article  Google Scholar 

  3. Schäfer, T., Böhler, E., Ruhdorfer, S., Weigl, L., Wessner, D., Heinrich, J., et al. (2001). Epidemiology of food allergy/food intolerance in adults: associations with other manifestations of atopy. Allergy Eur J Allergy Clin Immunol., 56, 1172–1179.

    Article  Google Scholar 

  4. Council, E. (2007). Directive 2007/47/EC of the European Parliament and of the Council of 5 September 2007. Off J Eur Union.

  5. Saarinen, K. M., Juntunen-Backman, K., Järvenpää, A. L., Kuitunen, P., Lope, L., Renlund, M., et al. (1999). Supplementary feeding in maternity hospitals and the risk of cow’s milk allergy: a prospective study of 6209 infants. The Journal of Allergy and Clinical Immunology, 104, 457–461.

    Article  Google Scholar 

  6. Bock, S. A. (1987). Prospective appraisal of complaints of adverse reactions to foods in children during the first 3 years of life. Pediatrics., 79, 683–688.

    Google Scholar 

  7. Hochwallner, H., Schulmeister, U., Swoboda, I., Spitzauer, S., & Valenta, R. (2014). Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention. Methods, 66(1), 22–33.

  8. Hochwallner, H., Schulmeister, U., Swoboda, I., Balic, N., Geller, B., Nystrand, M., et al. (2010). Microarray and allergenic activity assessment of milk allergens. Clinical and Experimental Allergy, 40, 1809–1818.

    Article  Google Scholar 

  9. Permyakov, E. A., & Berliner, L. J. (2000). α-Lactalbumin: structure and function. FEBS Letters, 473, 269–274.

    Article  Google Scholar 

  10. Stanciuc, N., & Râpeanu, G. (2010). An overview of bovine α-lactalbumin structure and functionality. Ann Univ Dunarea Jos Galati Fascicle VI - Food Technol., 34, 82–93.

    Google Scholar 

  11. Wehbi, Z., Pérez, M.-D., Sánchez, L., Pocoví, C., Barbana, C., & Calvo, M. (2005). Effect of heat treatment on denaturation of bovine α-lactalbumin: determination of kinetic and thermodynamic parameters. Journal of Agricultural and Food Chemistry, 53, 9730–9736.

    Article  Google Scholar 

  12. Lien, E. L. (2003). Infant formulas with increased concentrations of α-lactalbumin 1–4. The American Journal of Clinical Nutrition, 77, 4–7.

    Article  Google Scholar 

  13. Davis, A. M., Harris, B. J., Lien, E. L., Pramuk, K., & Trabulsi, J. (2008). α-Lactalbumin-rich infant formula fed to healthy term infants in a multicenter study: plasma essential amino acids and gastrointestinal tolerance. Eur J Clin Nutr, 62, 1294–1301.

    Article  Google Scholar 

  14. Alves, R. C., Barroso, M. F., González-García, M. B., Oliveira, M. B. P. P., & Delerue-Matos, C. (2016). New trends in food allergens detection: toward biosensing strategies. Critical Reviews in Food Science and Nutrition, 56(14), 2304–2319.

  15. Van Hengel, A. J. (2007). Food allergen detection methods and the challenge to protect food-allergic consumers. Analytical and Bioanalytical Chemistry, 389, 111.

    Article  Google Scholar 

  16. Kilic, T., Soler, M., Fahimi-Kashani, N., Altug, H., & Carrara, S. (2018). Mining the potential of label-free biosensors for in vitro antipsychotic drug screening. Biosensors, 8(1), 6–12.

  17. Shin, S. R., Zhang, Y. S., Kim, D.-J., Manbohi, A., Avci, H., Silvestri, A., et al. (2016). Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Analytical Chemistry, 88(20), 10019–10027.

  18. Shin, S. R., Kilic, T., Zhang, Y. S., Avci, H., Hu, N., Kim, D., et al. (2017). Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Advancement of Science, 4, 1600522.

  19. Kilic, T., Erdem, A., Ozsoz, M., & Carrara, S. (2018). microRNA biosensors: opportunities and challenges among conventional and commercially available techniques. Biosens. Bioelectron, 99, 525–546.

    Article  Google Scholar 

  20. Kilic, T., Valinhas, A. T. D. S., Wall, I., Renaud, P., & Carrara, S. (2018). Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells. Scientific Reports, 8, 9402.

    Article  Google Scholar 

  21. Li, Z., Wen, F., Li, Z., Zheng, N., Jiang, J., & Xu, D. (2017). Simultaneous detection of α-lactoalbumin, β-lactoglobulin and lactoferrin in milk by visualized microarray. BMC Biotechnol. BMC Biotechnology, 17, 1–9.

    Article  Google Scholar 

  22. Ashley, J., Piekarska, M., Segers, C., Trinh, L., Rodgers, T., Willey, R., et al. (2017). An SPR based sensor for allergens detection. Biosens Bioelectron. Elsevier, 88, 109–113.

    Article  Google Scholar 

  23. Montiel, V. R., Campuzano, S., Conzuelo, F., Gamella, M., Reviejo, A. J., & Pingarrón, J. M. (2015). Talanta electrochemical magnetoimmunosensing platform for determination of the milk allergen β -lactoglobulin. Talanta. Elsevier, 131, 156–162.

    Article  Google Scholar 

  24. Eissa, S., Tlili, C., L’Hocine, L., & Zourob, M. (2012). Electrochemical immunosensor for the milk allergen Β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens Bioelectron, 38, 308–313.

    Article  Google Scholar 

  25. Indyk, H. E. (2009). Development and application of an optical biosensor immunoassay for α-lactalbumin in bovine milk. Int Dairy J, 19, 36–42.

    Article  Google Scholar 

  26. Yang, A., Zheng, Y., Long, C., Chen, H., Liu, B., Li, X., et al. (2014). Fluorescent immunosorbent assay for the detection of alpha lactalbumin in dairy products with monoclonal antibody bioconjugated with CdSe/ZnS quantum dots. Food Chem, 150, 73–79.

    Article  Google Scholar 

  27. Angelopoulou, Μ., Botsialas, A., Salapatas, A., Petrou, P. S., Haasnoot, W., Makarona, E., et al. (2015). Assessment of goat milk adulteration with a label-free monolithically integrated optoelectronic biosensor. Anal Bioanal Chem, 407, 3995.

    Article  Google Scholar 

  28. Montiel, V. R., Campuzano, S., Torrente-rodríguez, R. M., Reviejo, A. J., & Pingarrón, J. M. (2016). Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk. Food Chemistry, 213, 595–601.

  29. Alves, R. C., Pimentel, F. B., Nouws, H. P. A., Correr, W., González-García, M. B., Oliveira, M. B. P. P., et al. (2015). Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach. Analytical and Bioanalytical Chemistry, 407(14), 3995–4004.

  30. Moon, J. M., Hui Kim, Y., & Cho, Y. (2014). A nanowire-based label-free immunosensor: direct incorporation of a PSA antibody in electropolymerized polypyrrole. Biosens Bioelectron. Elsevier, 57, 157–161.

    Article  Google Scholar 

  31. Kaplan, M., Kilic, T., Guler, G., Mandli, J., Amine, A., & Ozsoz, M. (2017). A novel method for sensitive microRNA detection: electropolymerization based doping. Biosensors & Bioelectronics, 92.

  32. Ziegel, E. R. (2004). Statistics and chemometrics for analytical chemistry. Technometrics, 46(4), 498–501.

  33. Kaplan, M., Kilic, T., Guler, G., Mandli, J., Amine, A., & Ozsoz, M. (2017). A novel method for sensitive microRNA detection: electropolymerization based doping. Biosens Bioelectron, 92, 770–778.

    Article  Google Scholar 

  34. Hodgson A., J, Spencer M., J, Wallace G., G. 1992. Incorporation of proteins into conducting electroactive polymers. A preliminary study. Reactive Polymers, 18(1), 77–85.

  35. Xu, N., Pan, L., Yu, C., Wei, X., & Wang, Y. (2017). Goldmag-based enzyme-linked immunosorbent assay for determination of α-lactalbumin in milk. Food Agric Immunol. Taylor & Francis, 28, 1211–1225.

    Article  Google Scholar 

  36. Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition-a review. Lipids in Health and Disease, 6, 1–16.

    Article  Google Scholar 

  37. Nor’Aishah binti Hasan. (2012). Almond milk production and study of quality characteristics. J Acad, 2, 1–8.

    Google Scholar 

Download references

Acknowledgements

The authors would also like to thank Chêne Sophie Eglantine Tiffanie for preliminary experiments performed for this project.

Funding

The authors would like to thank the Food and Nutrition Center at EPFL for funding of this work through the project titled: “Multi-Panel Lab-on-a-Chip System based on Electrochemical Sensors for Allergens Testing on Real Milk Samples in-the-field”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Carrara.

Ethics declarations

Does not apply/not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, T., Philipp, P.J., Giavedoni, P. et al. Milk Allergen Detection: Sensitive Label-Free Voltammetric Immunosensor Based on Electropolymerization. BioNanoSci. 10, 512–522 (2020). https://doi.org/10.1007/s12668-020-00730-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00730-4

Keywords

Navigation