Skip to main content
Log in

Tri-Calcium and Zinc Phosphates Solubilization by Aspergillus niger and Its Relation to Organic Acids Production

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In recent years, numerous reports have characterized fungi not only to increase the efficiency of phosphate fertilizers but also to increase the availability of phosphorus from insoluble sources of phosphate. Aspergillus niger, as one of the ubiquitous organic acid-producing soil fungus, was screened for the ability to solubilize different concentrations of tricalcium phosphate (TCP) and zinc phosphate (ZP) ranging from 100 to 400 ppm. A. niger was able to solubilize TCP and ZP with solubilization index ranging from 2.10 to 3.5 and from 2.06 to 2.26, respectively. A drop in pH from 6.5 to 3.0 and 3.2 as one mechanism of phosphorus solubilization was observed in medium inoculated and supplemented with 400 ppm of TCP and ZP, respectively. A. niger released phosphorus from TCP (23.01 ppm) increasing its concentrations up to 400 ppm associated with increasing calcium releasing. Phosphorus releasing increased (42.16 ppm) with increasing ZP up to 200 ppm, and then decreased with increasing ZP up to 400 ppm associated with the releasing of zinc. HPLC results indicate that organic acids were released in high concentration when TCP and ZP were used with different concentrations compared with the control. For example, oxalic, malic, succinic, citric, and fumaric acid concentrations were 3.61, 3.13, 4.93, 3.17, and 2.11 at 100 ppm of TCP; and 3.09, 5.50, 5.08, 3.80, and 2.35 μg/ml at ZP compared with their concentrations 2.46, 1.83, 2.61, 3.16, and 1.37 μg/ml, respectively, in control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Son, H. J., Park, G. T., Cha, M. S., & Hoe, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204–210.

    Article  Google Scholar 

  2. Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.p. 960). New Delhi: Prentice Hall of India.

    Google Scholar 

  3. Song, O. R., Lee, S. J., Lee, Y. S., Lee, S. C., Kim, K. K., & Choi, Y. L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Baraz J Microbiol, 39, 151–156.

    Article  Google Scholar 

  4. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2, 587.

    Article  Google Scholar 

  5. Abdel-Ghany, T. M., & Alawlaqi, M. M. (2018). Molecular identification of rhizospheric thermo-halotolerant Aspergillus terreus and its correlation to sustainable agriculture. BioResources, 13(4), 8012–8023.

    Article  Google Scholar 

  6. Pradhan, N., & Sukla, L. B. (2005). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology, 5(10), 850–854.

    Google Scholar 

  7. Abdel -Ghany, T. M., Alawlaqi, M. M., & Al Abboud, M. A. (2013). Role of biofertilizers in agriculture: a brief review. Mycopathologia, 11(2), 95–101.

    Google Scholar 

  8. Abdel-Ghany, T. M., Aisha, M., Al-Rajhi, H., Al Abboud, M. A., Alawlaqi, M. M., Magdah, G., Helmy, E. A. M., & Mabrouk, A. S. (2018a). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8(1), 5–16. https://doi.org/10.1007/s12668-017-0413-3.

    Article  Google Scholar 

  9. Abdel-Ghany, T. M., Ganash, M., Bakri, M. M., & Al-Rajhi, A. M. H. (2018b). Molecular characterization of Trichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. BioResources, 13(1), 1729–1744. https://doi.org/10.15376/biores.13.1.1729-1744.

    Article  Google Scholar 

  10. Abdel-Ghany, T. M., Masrahi, Y. S., Mohamed, A., A, A., Alawlaqi, M. M., & Elhussien, N. I. (2015). Maize (Zea mays L.) growth and metabolic dynamics with plant growth-promoting rhizobacteria under salt stress. Journal of Plant Pathology and Microbiology, 6(9), 305. https://doi.org/10.4172/2157-7471.1000305.

    Article  Google Scholar 

  11. Didiek, G. S., & Sugiarto, Y. (2000). Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. America Journal Soil Science & Biochemistry, 64, 927–932.

    Google Scholar 

  12. Helen, J. B. P., Graeme, K., Ritz, D., Fordyce, A., & Geoffrey, G. M. (2002). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 40, 65–71.

    Article  Google Scholar 

  13. Morales, A., Alvear, M., Valenzuela, E., Castillo, C. E., & Borie, F. (2011). Screening, evaluation and selection ofphosphate-solubilising fungi as potential biofertilizer. Journal of Soil Science and Plant Nutrition, 11(4), 89–103.

    Article  Google Scholar 

  14. Gizaw, B., Tsegay, Z., Tefera, G., Aynalem, E., Wassie, M., & Abatneh, E. (2017). Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. African Journal of Microbiology Research, 11(17), 687–696. https://doi.org/10.5897/AJMR2017.8525.

    Article  Google Scholar 

  15. Nath, R., Sharma, G. D., & Madhumita, B. (2012). Efficiency of tri calcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). European Journal of Experimental Biology, 2(4), 1354–1358.

    Google Scholar 

  16. Padamavathi, T. (2015a). Optimization of phosphate solubilization by Aspergillus niger using plackett-burman and response surface methodology. Journal of Soil Science and Plant Nutrition, 15(3), 781–793.

    Google Scholar 

  17. El-Azouni, M. I. (2008). Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. Journal of Applied Sciences Research, 4(6), 592–598.

    Google Scholar 

  18. Venkateswarlu, B., Rao, A. V., Raina, P., & Ahmad, N. (1984). Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. Journal of the Indian Society of Soil Science, 32, 273–277.

    Google Scholar 

  19. Kim, K. Y., McDonald, G. A., & Jordan, D. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils, 24(4), 347–352.

    Article  Google Scholar 

  20. Deubel, A., Granse, & Merbach, W. (2000). Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. Journal of Plant Nutrition and Soil Science, 163, 387–392.

    Article  Google Scholar 

  21. Baig, K. S., Arshad, M., Zahir, Z. A., & Cheema, M. A. (2010). Comparative efficacy of qualitative and quantitative methods for rock phosphate solubilization with phosphate solubilizing rhizobacteria. Soil and Environment, 29, 82–86.

    Google Scholar 

  22. Patil, M. P., Kuligod, V. B., Hebsur, N. S., Patil, C. R., & Kulkarni, G. N. (2012). Effect of phosphate solubilizing fungi and phosphorus levels on growth, yield and nutrient content in maize (Zea mays). Karnataka. The Journal of Agricultural Science, 25(1), 58–62.

    Google Scholar 

  23. Illmer, P., & Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry, 24, 389–395.

    Article  Google Scholar 

  24. Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33–41.

    Article  Google Scholar 

  25. Cunningham, J. E., & Kuiack, C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Applied and Environmental Microbiology, 58, 1451–1458.

    Article  Google Scholar 

  26. Raper, K. B., & Fennell, D. I. (1973). The genus Aspergillus. New York: Robert E Krieger Publishing Company.

    Google Scholar 

  27. Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., & Klaassen, C. H. W. (2014). Phylogeny, identification and nomenclature of the genus. Aspergillus. Studies in Mycology, 78, 141–173.

    Article  Google Scholar 

  28. Padamavathi, T. (2015b). Solubilization of different inorganic phosphates by Aspergillus niger and Penicilium oxalicum. Advances in Bioresearch, 6(3), 113–119.

    Google Scholar 

  29. Iman, M. (2008). Effect of phosphate solubilizing fungi on growth and nutrient uptake of soyabean (Glycine max L.) plants. Journal of Applied Science Research, 4, 592–598.

    Google Scholar 

  30. Firew, E., Delelegn, W., & Diriba, M. (2016). Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. International Journal of Microbiology, 2016, 5472601, 11 pages. https://doi.org/10.1155/2016/5472601.

    Article  Google Scholar 

  31. Chuang, C. C., Kuo, Y. L., Chao, C. C., & Chao, W. L. (2007). Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology & Fertility of Soils, 43(5), 575–584.

    Article  Google Scholar 

  32. Paul, S., & Sinha, N. (2017). Solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India Dipak. Annals of Agrarian Science, 15, 130–136.

    Article  Google Scholar 

  33. Iyer, B., Mahendrapal, S. R., & Shalini, R. (2017). Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Microbiological Research, 202(2017), 43–50. https://doi.org/10.1016/j.micres.2017.05.005.

    Article  Google Scholar 

  34. Alam, S., Samina, K., Najma, A., & Maliha, R. (2002). In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture & Biology., 4(4), 444–458.

    Google Scholar 

  35. Fomina, M., Alexander, I. J., Hillier, S., & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobial Journal, 21, 351–366.

    Article  Google Scholar 

  36. Hruda, R. S., & Nibha, G. (2014). Evaluation of phosphate solubilising potential of some endophytic fungi under solid and liquid state. BMR Microbiology, 1(1), 1–6.

    Google Scholar 

  37. Akintokun, A. K., Akande, G. A., Akintokun, P. O., Popoola, T. O. S., & Babalola, A. O. (2007). Solubilization of insoluble phosphorus by organic acid-producing fungi isolated from the Nigerian soil. International Journal of Soil Science, 2(4), 301–307.

    Article  Google Scholar 

  38. Omar, S. A. (1997). The role of rock-phosphate-solubilizing fungi and vesicular-arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 14, 211–218.

    Article  Google Scholar 

  39. Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal, 63, 1703–1708.

    Article  Google Scholar 

  40. Narula, N., Kumar, V., Behl, R. K., Deubel, A. A., & Gransee, A. (2000). Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 163, 393–398.

    Article  Google Scholar 

  41. Banik, S., & Dey, B. K. (1983). Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphate as a sole source of phosphorus. Zentralblatt fur Mikrobiologie, 138, 437–442.

    Article  Google Scholar 

  42. Asea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20, 459–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwah M. Bakri.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakri, M.M. Tri-Calcium and Zinc Phosphates Solubilization by Aspergillus niger and Its Relation to Organic Acids Production. BioNanoSci. 9, 238–244 (2019). https://doi.org/10.1007/s12668-019-0604-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-0604-1

Keywords

Navigation