Skip to main content
Log in

Biosynthesis of Silver Nanoparticles Using Thymoquinone and Evaluation of Their Radio-Sensitizing Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Delivering an optimum radiation dose to the target and preserving the surrounding normal tissues are the main tasks in radiation therapy. Latterly, there is a special interest in formulations of metallic-based nanoparticles to be used as radio-sensitizers. One of these silver nanoparticles (AgNPs) have been used for a wide range of biomedical applications depending on their surface modifications, size, and shape. This study aims to fabricate and characterize green synthesized silver nano-formulations using thymoquinone (TQ), as reducing and capping agent and assessment of their radio-sensitizing effect against the highly aggressive MDA-MB-231 mammary adenocarcinoma. AgNPs were prepared with different sizes by changing the amounts of added TQ. The prepared silver nano-formulations have been characterized using different physical techniques. The radio-sensitization efficacy of prepared AgNPs has been assessed using MTT cytotoxicity assay. Further assessment, neutral comet assay, was carried out to investigate the amount of DNA double-strand breaks which occurred due to AgNPs radio-sensitization. TEM micrograph revealed that as the amount of the added TQ increased from 10, 20, and 40 mg, the average size of prepared silver nanoparticles (AgNPs-20, AgNPs-15, and AgNPs-10) was gradually decreased to be 20 ± 1.5 nm, 15 ± 2 nm, and 10 ± 1.8 nm, respectively. This was confirmed by DLS measurements and UV-Vis spectroscopy. Comet and MTT assay results showed that AgNPs have a size and concentration-dependent radio-sensitization activity, whereas the radiation dose enhancement for small-sized nanoparticles (AgNPs-10) was greater than that of larger sized (AgNPs-20 and AgNPs-15). Therefore, thymoquinone capping silver nanoparticles represent a promising engineered nano-formulation for enhancing cancer radiosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., & Baran, J. (2018). Applications of noble metal-based nanoparticles in medicine. International Journal of Molecular Sciences, 19(12), 4031.

    Article  Google Scholar 

  2. Pagáčová, E., Štefančíková, L., Schmidt-Kaler, F., Hildenbrand, G., Vičar, T., Depeš, D., Lee, J. H., Bestvater, F., Lacombe, S., Porcel, E., & Roux, S. (2019). Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy. International Journal of Molecular Sciences, 20(3), 588.

    Article  Google Scholar 

  3. Mathur, P., Jha, S., Ramteke, S., & Jain, N. K. (2018). Pharmaceutical aspects of silver nanoparticles. Artificial cells, Nanomedicine, and Biotechnology, 46(sup1), 115–126.

    Article  Google Scholar 

  4. Huang, P., Yang, D. P., Zhang, C., Lin, J., He, M., Bao, L., & Cui, D. (2011). Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale, 3(9), 3623–3626.

    Article  Google Scholar 

  5. Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., & Galdiero, M. (2014). Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology, 98(5), 1951–1961.

    Article  Google Scholar 

  6. Wei, G., Wang, L., Liu, Z., Song, Y., Sun, L., Yang, T., & Li, Z. (2005). DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering. The Journal of Physical Chemistry B, 109(50), 23941–23947.

    Article  Google Scholar 

  7. Franco-Molina, M. A., Mendoza-Gamboa, E., Sierra-Rivera, C. A., Gómez-Flores, R. A., Zapata-Benavides, P., Castillo-Tello, P., Alcocer-González, J. M., Miranda-Hernández, D. F., Tamez-Guerra, R. S., & Rodríguez-Padilla, C. (2010). Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. Journal of Experimental & Clinical Cancer Research, 29(1), 148.

    Article  Google Scholar 

  8. Asharani, P. V., Hande, M. P., & Valiyaveettil, S. (2009). Anti-proliferative activity of silver nanoparticles. BMC Cell Biology, 10(1), 65.

    Article  Google Scholar 

  9. Su, X. Y., Liu, P. D., Wu, H., & Gu, N. (2014). Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biology & Medicine, 11(2), 86.

    Google Scholar 

  10. Retif, P., Pinel, S., Toussaint, M., Frochot, C., Chouikrat, R., Bastogne, T., & Barberi-Heyob, M. (2015). Nanoparticles for radiation therapy enhancement: the key parametersx. Cancer Biology & Medicine, 11(2), 86.

    Google Scholar 

  11. Liu, P., Huang, Z., Chen, Z., Xu, R., Wu, H., Zang, F., Wang, C., & Gu, N. (2013). Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale, 5(23), 11829–11836.

    Article  Google Scholar 

  12. Xu, R., Ma, J., Sun, X., Chen, Z., Jiang, X., Guo, Z., Huang, L., Li, Y., Wang, M., Wang, C., & Liu, J. (2009). Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Research, 19(8), 1031.

    Article  Google Scholar 

  13. Ma, J., Xu, R., Sun, J., Zhao, D., Tong, J., & Sun, X. (2013). Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment. Journal of Nanoscience and Nanotechnology, 13(2), 1472–1475.

    Article  Google Scholar 

  14. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  15. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 7, 801–802.

    Article  Google Scholar 

  16. Yu, D. G. (2007). Formation of colloidal silver nanoparticles stabilized by Na + –poly (γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids and Surfaces B: Biointerfaces, 59(2), 171–178.

    Article  Google Scholar 

  17. Linthorst, J. A. (2010). An overview: origins and development of green chemistry. Foundations of Chemistry, 12(1), 55–68.

    Article  Google Scholar 

  18. Javaid, A., Oloketuyi, S. F., Khan, M. M., & Khan, F. (2018). Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience, 8(1), 43–59.

    Article  Google Scholar 

  19. de Souza, T. A. J., Souza, L. R. R., & Franchi, L. P. (2019). Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 171, 691–700.

    Article  Google Scholar 

  20. Zhao, X., Zhou, L., Riaz Rajoka, M. S., Yan, L., Jiang, C., Shao, D., Zhu, J., Shi, J., Huang, Q., Yang, H., & Jin, M. (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6), 817–835.

    Article  Google Scholar 

  21. Schneider-Stock, R., Fakhoury, I. H., Zaki, A. M., El-Baba, C. O., & Gali-Muhtasib, H. U. (2014). Thymoquinone: fifty years of success in the battle against cancer models. Drug Discovery Today, 19(1), 18–30.

    Article  Google Scholar 

  22. Banerjee, S., Padhye, S., Azmi, A., Wang, Z., Philip, P. A., Kucuk, O., Sarkar, F. H., & Mohammad, R. M. (2010). Review on molecular and therapeutic potential of thymoquinone in cancer. Nutrition and Cancer, 62(7), 938–946.

    Article  Google Scholar 

  23. ElKhoely, A., Hafez, H. F., Ashmawy, A. M., Badary, O., Abdelaziz, A., Mostafa, A., & Shouman, S. A. (2015). Chemopreventive and therapeutic potentials of thymoquinone in HepG2 cells: mechanistic perspectives. Journal of Natural Medicines, 69(3), 313–323.

    Article  Google Scholar 

  24. Talib, W. H., & Mahasneh, A. M. (2012). Combination of Ononis hirta and Bifidobacterium longum decreases syngeneic mouse mammary tumor burden and enhances immune response. Journal of Cancer Research and Therapeutics, 8(3), 417.

    Article  Google Scholar 

  25. Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398–405.

    Article  Google Scholar 

  26. Fathy, M. M., Mohamed, F. S., Elbialy, N., & Elshemey, W. M. (2018). Multifunctional chitosan-capped gold nanoparticles for enhanced cancer chemo-radiotherapy: an in vitro study. Physica Medica, 48, 76–83.

    Article  Google Scholar 

  27. Buckton, G. (2000). Interfacial phenomena in drug delivery and targeting. CRC press.

  28. Paolino, D., Sinha, P., Fresta, M., & Ferrari, M. (2006). Drug delivery systems. Encyclopedia of medical devices and instrumentation.

  29. Alam, S., Khan, Z. I., Mustafa, G., Kumar, M., Islam, F., Bhatnagar, A., & Ahmad, F. J. (2012). Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. International Journal of Nanomedicine, 7, 5705.

    Article  Google Scholar 

  30. Fahmy, H. M., Fathy, M. M., Abd-Elbadia, R. A., & Elshemey, W. M. (2019). Targeting of Thymoquinone-loaded mesoporous silica nanoparticles to different brain areas: In vivo study. Life Sciences, 222, 94–102.

    Article  Google Scholar 

  31. Cui, Y., Dong, H., Cai, X., Wang, D., & Li, Y. (2012). Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release. ACS Applied Materials & Interfaces, 4(6), 3177–3183.

    Article  Google Scholar 

  32. Gliga, A. R., Skoglund, S., Wallinder, I. O., Fadeel, B., & Karlsson, H. L. (2014). Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 11(1), 11.

    Article  Google Scholar 

  33. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112(43), 13608–13619.

    Article  Google Scholar 

  34. Liu, W., Wu, Y., Wang, C., Li, H. C., Wang, T., Liao, C. Y., Cui, L., Zhou, Q. F., Yan, B., & Jiang, G. B. (2010). Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology, 4(3), 319–330.

    Article  Google Scholar 

  35. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., & Prise, K. M. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 100(3), 412–416.

    Article  Google Scholar 

  36. Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by X-ray absorbing nanostructures. The Journal of Physical Chemistry B, 111(40), 11622–11625.

    Article  Google Scholar 

  37. Lin, Y., McMahon, S. J., Paganetti, H., & Schuemann, J. (2015). Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Physics in Medicine & Biology, 60(10), 4149.

    Article  Google Scholar 

  38. Ahmed, B. S., Rao, A. G., Sankarshan, B. M., Vicas, C. S., Namratha, K., Umesh, T. K., Somashekar, R., & Byrappa, K. (2016). Evaluation of gold, silver and silver–gold (bimetallic) nanoparticles as radiosensitizers for radiation therapy in cancer treatment. Cancer and Oncology Research, 4(3), 42–51.

    Google Scholar 

  39. Khoshgard, K., Kiani, P., Haghparast, A., Hosseinzadeh, L., & Eivazi, M. T. (2017). Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles. International Journal of Radiation Biology, 93(8), 757–763.

    Article  Google Scholar 

  40. Fathy, M. M., Fahmy, H. M., Saad, O. A., & Elshemey, W. M. (2019). Silica-coated iron oxide nanoparticles as a novel nano-radiosensitizer for electron therapy. Life Sciences, 234, 116756.

    Article  Google Scholar 

  41. Olive, P. L., Wlodek, D., & Banáth, J. P. (1991). DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Research, 51(17), 4671–4676.

    Google Scholar 

  42. Havaki, S., Kotsinas, A., Chronopoulos, E., Kletsas, D., Georgakilas, A., & Gorgoulis, V. G. (2015). The role of oxidative DNA damage in radiation induced bystander effect. Cancer Letters, 356(1), 43–51.

    Article  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mahmoud Fathy.

Ethics declarations

Conflict of Interest

None

Research Involving Humans and Animals Statement

None

Informed Consent

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathy, M.M. Biosynthesis of Silver Nanoparticles Using Thymoquinone and Evaluation of Their Radio-Sensitizing Activity. BioNanoSci. 10, 260–266 (2020). https://doi.org/10.1007/s12668-019-00702-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00702-3

Keywords

Navigation