Skip to main content

Advertisement

Log in

Ultra-small pyomelanin nanogranules abiotically derived from bacteria-secreted homogentisic acid show potential applications in inflammation and cancer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Melanins are a ubiquitous group of pigments widely acclaimed as potent free-radical scavengers. The present study proposed to harness this property of melanins for anti-inflammatory and anti-cancer applications. Pyomelanin, a potent form of melanin analogous to alkaptomelanin in humans, was derived from Pseudoalteromonas species and fabricated into ultra-small pyomelanin nanogranules (PNGs) by facile routes. These melanin nanogranules were characterized for various physicochemical attributes using DLS, TEM, FTIR, EPR, XRD, and TGDA. Additionally, elemental analysis and long-term particle stability study was also conducted. The ultra-small particles were ~ 5–7 nm in size through TEM with a very strict size distribution. The free-radical scavenging activity of PNG assessed through the DPPH assay was comparable with that of ascorbic acid. Significant inflammatory markers viz., cyclooxygenase, lipoxygenase, myeloperoxidase, and cellular nitrate levels estimated in lipopolysaccharide-triggered RAW264.7 cells were reduced upon PNG treatment. The cancer cell kill effect of PNG was estimated in lung carcinoma cells in comparison with normal fibroblasts, wherein percentage inhibition in cancer cells was ~ 2-fold higher than that observed in normal fibroblasts. Overall, our results demonstrate the proof-of-principle of using pyomelanin nanogranules for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen, R., & Tresini, M. (2000). Oxidative stress and gene regulation. Free Radical Biology and Medicine, 28, 463–499. https://doi.org/10.1016/S0891-5849(99)00242-7.

    Article  Google Scholar 

  2. Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free radical biology & medicine, 49, 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006.

    Article  Google Scholar 

  3. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9.

    Article  Google Scholar 

  4. Brod, S. A. (2000). Unregulated inflammation shortens human functional longevity. Inflammation Research, 49, 561–570. https://doi.org/10.1007/s000110050632.

    Article  Google Scholar 

  5. Vonkeman, H. E., & van de Laar, M. A. F. J. (2010). Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Seminars in Arthritis and Rheumatism, 39, 294–312. https://doi.org/10.1016/j.semarthrit.2008.08.001.

    Article  Google Scholar 

  6. Boelsterli, U. A. (2002). Mechanisms of NSAID-induced hepatotoxicity focus on nimesulide. Drug Safety, 25, 633–648. https://doi.org/10.2165/00002018-200225090-00003.

    Article  Google Scholar 

  7. Hörl, W. H. (2010). Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals, 3, 2291–2321. https://doi.org/10.3390/ph3072291.

    Article  Google Scholar 

  8. McGettigan, P., & Henry, D. (2011). Cardiovascular risk with non-steroidal anti-inflammatory drugs: Systematic review of population-based controlled observational studies. PLoS Medicine, 8, e1001098. https://doi.org/10.1371/journal.pmed.1001098.

    Article  Google Scholar 

  9. McCarberg, B., & Gibofsky, A. (2012). Need to develop new nonsteroidal anti-inflammatory drug formulations. Clinical Therapeutics, 34(9), 1954–1963. https://doi.org/10.1016/j.clinthera.2012.08.005.

    Article  Google Scholar 

  10. Chen, L., Liu, T., Wang, Q., & Liu, J. (2017). Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo. BMC Complementary and Alternative Medicine, 17, 233. https://doi.org/10.1186/s12906-017-1739-7.

    Article  Google Scholar 

  11. Chen, S., Liang, Q., Xie, S., Liu, E., Yu, Z., Sun, L., et al. (2016). Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation. Frontiers of Chemical Science and Engineering, 10, 383–388. https://doi.org/10.1007/s11705-016-1574-2.

    Article  Google Scholar 

  12. Watt, A. A. R., Bothma, J. P., & Meredith, P. (2009). The supramolecular structure of melanin. Soft Matter, 5, 3754. https://doi.org/10.1039/b902507c.

    Article  Google Scholar 

  13. Panzella, L., Gentile, G., D’Errico, G., Della Vecchia, N. F., Errico, M. E., Napolitano, A., et al. (2013). Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angewandte Chemie - International Edition, 52, 12684–12687. https://doi.org/10.1002/anie.201305747.

    Article  Google Scholar 

  14. Costa, T. G., Younger, R., Poe, C., Farmer, P. J., & Szpoganicz, B. (2012). Studies on synthetic and natural melanin and its affinity for Fe(III) ion. Bioinorganic Chemistry and Applications, 2012, 712840. https://doi.org/10.1155/2012/712840.

    Article  Google Scholar 

  15. Kim, D. J., Ju, K. Y., & Lee, J. K. (2012). The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions. Bulletin of the Korean Chemical Society, 33, 3788–3792. https://doi.org/10.5012/bkcs.2012.33.11.3788.

    Article  Google Scholar 

  16. Liopo, A., Su, R., & Oraevsky, A. A. (2015). Melanin nanoparticles as a novel contrast agent for optoacoustic tomography. Photoacoustics, 3, 35–43. https://doi.org/10.1016/j.pacs.2015.02.001.

    Article  Google Scholar 

  17. Zhang, R., Fan, Q., Yang, M., Cheng, K., Lu, X., Zhang, L., et al. (2015). Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Advanced Materials, 27, 5063–5069. https://doi.org/10.1002/adma.201502201.

    Article  Google Scholar 

  18. Kurian, K,Ck, N.,Nair, A. H., & Bhat, S. (2014). A novel melanin producing Pseudoalteromonas lipolytica BTCZ28 isolated from 96m depth marine sediments. https://doi.org/10.13140/2.1.1926.8803

  19. YABUUCHI, E., & OHYAMA, A. (1972). Characterization of “pyomelanin”-producing strains of Pseudomonas aeruginosa. International Journal of Systematic Bacteriology, 22, 53–64. https://doi.org/10.1099/00207713-22-2-53.

    Article  Google Scholar 

  20. Zeng, Z., Guo, X. P., Cai, X., Wang, P., Li, B., Yang, J. L., & Wang, X. (2017). Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling. Microbial Biotechnology, 10, 1718–1731. https://doi.org/10.1111/1751-7915.12773.

    Article  Google Scholar 

  21. Turick, C. E., Knox, A. S., Becnel, J. M., & Ekechukwu, A. A. M. C. (2010). Properties and function of pyomelanin. (Elnashar M, Ed.). InTech. https://doi.org/10.5772/10273.

  22. Sajjan, S., Kulkarni, G., Yaligara, V., Kyoung, L., & Karegoudar, T. B. (2010). Purification and physiochemical characterization of melanin pigment from klebsiella sp. GSK. Journal of Microbiology and Biotechnology, 20, 1513–1520. https://doi.org/10.4014/jmb.1002.02006.

    Article  Google Scholar 

  23. Zonios, G., Bykowski, J., & Kollias, N. (2001). Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. Journal of Investigative Dermatology, 117, 1452–1457. https://doi.org/10.1046/j.0022-202x.2001.01577.x.

    Article  Google Scholar 

  24. Mbonyiryivuze, A., Omollo, I., Ngom, B. D., Mwakikunga, B., Dhlamini, S. M., Park, E., & Maaza, M. (2015). Natural dye sensitizer for Grӓtzel cells: sepia melanin. Physics and Materials Chemistry, 3, 1–6. https://doi.org/10.12691/pmc-3-1-1.

    Article  Google Scholar 

  25. Della Vecchia, N. F., Luchini, A., Napolitano, A., Derrico, G., Vitiello, G., Szekely, N., et al. (2014). Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 30, 9811–9818. https://doi.org/10.1021/la501560z.

    Article  Google Scholar 

  26. Plonka, P. M. (2009). Electron paramagnetic resonance as a unique tool for skin and hair research. Experimental Dermatology, 18, 472–484. https://doi.org/10.1111/j.1600-0625.2009.00883.x.

    Article  Google Scholar 

  27. Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. K. (2013). Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. International Journal of Biological Macromolecules, 58, 263–274. https://doi.org/10.1016/j.ijbiomac.2013.04.041.

    Article  Google Scholar 

  28. Wang, Z., Keller, L. M. M., Dillon, J., & Gaillard, E. R. (2006). Oxidation of A2E results in the formation of highly reactive aldehydes and ketones. Photochemistry and Photobiology, 8, 474–479. https://doi.org/10.1562/2006-04-01-ra-864.

    Article  Google Scholar 

  29. Rózanowska, M., Sarna, T., Land, E. J., & Truscott, T. G. (1999). Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radical Biology and Medicine, 26, 518–525. https://doi.org/10.1016/S0891-5849(98)00234-2.

    Article  Google Scholar 

  30. Różanowska, M., Sarna, T., Land, E. J., & Truscott, T. G. (1999). Free radical scavenging properties of melanin. Free Radical Biology and Medicine. https://doi.org/10.1016/S0891-5849(98)00234-2.

  31. Rådmark, O., Werz, O., Steinhilber, D., & Samuelsson, B. (2007). 5-lipoxygenase: regulation of expression and enzyme activity. Trends in Biochemical Sciences. https://doi.org/10.1016/j.tibs.2007.06.002.

  32. Kurian, K., Noble, & Bhat, S. (2018). Food, cosmetic and biological applications of characterized DOPA-melanin from Vibrio alginolyticus strain BTKKS3. Applied Biological Chemistry, 61, 163–171.

    Article  Google Scholar 

  33. Kurian, N. K., Nair, H. P., & Bhat, S. G. (2015). Evaluation of anti-inflammatory property of melanin from marine bacillus spp. BTCZ31. Asian Journal of Pharmaceutical and Clinical Research, 8, 251–255.

    Google Scholar 

  34. Yang, M. H., Yoon, K. D., Chin, Y. W., Park, J. H., & Kim, J. (2009). Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Bioorganic and Medicinal Chemistry, 17, 2689–2694. https://doi.org/10.1016/j.bmc.2009.02.057.

    Article  Google Scholar 

  35. Jayesh, K., Helen, L. R., Vysakh, A., Binil, E., & Latha, M. S. (2017). In vivo toxicity evaluation of aqueous acetone extract of Terminalia bellirica (Gaertn.) Roxb. fruit. Regulatory Toxicology and Pharmacology, 95, 1654–1660. https://doi.org/10.1016/j.yrtph.2017.04.002.

    Article  Google Scholar 

  36. MASUDA, T., SOMEYA, T., & FUJIMOTO, A. (2010). Phenolic inhibitors of chemical and enzymatic oxidation in the leaves of Myrica rubra. Bioscience, Biotechnology, and Biochemistry, 74, 212–215. https://doi.org/10.1271/bbb.90697.

    Article  Google Scholar 

  37. Lee, T. H., Jung, M., Bang, M. H., Chung, D. K., & Kim, J. (2012). Inhibitory effects of a spinasterol glycoside on lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines via down-regulating MAP kinase pathways and NF-κB activation in RAW264.7 macrophage cells. International Immunopharmacology, 13, 264–270. https://doi.org/10.1016/j.intimp.2012.05.005.

    Article  Google Scholar 

  38. Ittiyavirah, S. P. M. A. R. P. R. R. (2014). Inhibition of growth and induction of apoptosis in PC3 and A549 cell lines by hydro alcoholic fruit extract of Morinda tinctoria roxb: in vitro analysis. Journal of Scientific and Innovative Research, 3, 303–307.

    Google Scholar 

Download references

Acknowledgment

The authors sincerely thank the University Grant Commission, Govt. of India, and the Department of Science and Technology, Govt. of India, for granting fellowships during the study. The authors also extend their gratitude towards the Cochin University of Science and Technology as well as the Sophisticated Test and Instrumentation Centre-Kochi for providing the infrastructure and analysis facilities respectively. The authors also thank the anonymous reviewers who reviewed the manuscript.

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita G. Bhat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, S., Kurian, N.K. & Bhat, S.G. Ultra-small pyomelanin nanogranules abiotically derived from bacteria-secreted homogentisic acid show potential applications in inflammation and cancer. BioNanoSci. 10, 191–203 (2020). https://doi.org/10.1007/s12668-019-00689-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00689-x

Keywords

Navigation