Skip to main content

Advertisement

Log in

Antitumor Activity of Curcumin-Green Synthesized Gold Nanoparticles: In Vitro Study

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

There are plethoras of delivery systems for anticancer agents. Natural anticancer agents are promising due to their biocompatibility. However, one of the major problems of using natural anticancer agents, such as curcumin, is their low solubility and bioavailability under physiological conditions. Here, we studied the effect of gold nanoparticles (AuNP's) on enhancing the efficacy of curcumin as an anticancer agent. The physicochemical properties of curcumin-reduced gold nanoparticles (AuNP's-Cur) were studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV/Vis spectroscopy. We evaluated the cytotoxicity of the prepared nanoparticle against colon (HCT-116) and breast (MCF-7) human cancer cell lines. TEM images revealed the mono-dispersed spherical nature of AuNP's-Cur. Curcumin-reduced gold nanoparticles are highly stable (aggregation-resistant) over a period of 6 months. Our cell-based assay showed that the prepared AuNP's-Cur (0.72 μg mL−1) have higher antiproliferative and apoptotic effects against MCF-7 and HCT-116 cells, compared to free curcumin. The development of such eco-friendly nanocarrier for curcumin greatly enhanced its antitumor activity, indicating the promising utilization of nutraceutical nanoformulation in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kris-Etherton, P., Hecker, K., Bonanome, A., Coval, S., Binkoski, A., Hilpert, K., Griel, A., & Etherton, T. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113(9B), 71S–88S.

    Article  Google Scholar 

  2. Amin, A., Kucuk, O., Khuri, F., & Shin, D. (2009). Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology, 27, 2712–2725.

    Article  Google Scholar 

  3. Nair, H., Sung, B., Yadav, V., Kannappan, R., Chaturvedi, M., & Aggarwal, B. (2010). Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochemical Pharmacology, 80, 1833–1843.

    Article  Google Scholar 

  4. Aggarwal, B., & Sung, B. (2009). Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences, 30, 85–94.

    Article  Google Scholar 

  5. Sharma, R., Gescher, A., & Steward, W. (2005). Curcumin: the story so far. European Journal of Cancer, 41(13), 1955–1968.

    Article  Google Scholar 

  6. Chan, M., Huang, H., Fenton, M., & Fong, D. (1998). In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochemical Pharmacology, 55, 1955–1962.

    Article  Google Scholar 

  7. Goel, A., Kunnumakkara, A., & Aggarwal, B. (2008). Curcumin as “Curecumin”: from kitchen to clinic. Biochemical Pharmacology, 75, 787–809.

    Article  Google Scholar 

  8. Aggarwal, B., Shishodia, S., Takada, Y., Banerjee, S., Newman, R., Bueso-Ramos, C., & Price, J. (2005). Curcumin suppresses the paclitaxel-induced nuclear-factor kappa B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clinical Cancer Research, 11, 7490–7498.

    Article  Google Scholar 

  9. Gururaj, A., Belakavadi, M., Venkatesh, D., Marme, D., & Salimath, B. (2002). Molecular mechanisms of anti-angiogenic effect of curcumin. Biochemical and Biophysical Research Communications, 297, 934–942.

    Article  Google Scholar 

  10. Aggarwal, B., Kumar, A., & Bharti, A. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research, 23, 363–398.

    Google Scholar 

  11. Choudhuri, T., Pal, S., Agwarwal, M., Das, T., & Sa, G. (2002). Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters, 512, 334–340.

    Article  Google Scholar 

  12. Lao, C., Ruffin, M., Normolle, D., Heath, D., Murray, S., Bailey, J., Boggs, M., Crowell, J., Rock, C., & Brenner, D. (2006). Dose escalation of a curcuminoid formulation. BMC Complementary Altern. Med., 6(10), 1–4.

    Google Scholar 

  13. Cheng, A., Hsu, C., Lin, J., Hsu, M., Ho, Y., Shen, T., Ko, J., Lin, J., Lin, B., Ming-Shiang, W., Yu, H., Jee, S., Chen, G., Chen, T., Chen, C., Lai, M., Pu, Y., Pan, M., Wang, Y., Tsai, C., & Hsieh, C. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or premalignant lesions. Anticancer Research, 21(4B), 2895–2900.

    Google Scholar 

  14. L. Howells, E. Moiseeva, C. Neal , B. Foreman , C. Andreadi , Y. Sun , E. Hudson , M. Manson. Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals. Acta Pharmacologica Sinica 28:1274–1304 (2007).

    Article  Google Scholar 

  15. Wang, S., Tan, M., Zhong, Z., Chen, M., & Wang, Y. (2011). Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. Journal of Nanomaterials, 1–8.

  16. Tang, H., Murphy, C., Zhang, B., Shen, Y., Van Kirk, E., Murdoch, W., & Radosz, M. (2010). Curcumin polymers as anticancer conjugates. Biomaterials, 31(27), 7139–7149.

    Article  Google Scholar 

  17. Anand, P., Kunnumakkara, A., Newman, R., & Aggarwal, B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4(6), 807–818.

    Article  Google Scholar 

  18. Khalil, N., Nascimento, T., Casa, D., Dalmolin, L., de Mattos, A., Hoss, I., Romano, M., & Mainardes, R. (2013). Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces B. Biointerfaces, 101, 353–360.

    Article  Google Scholar 

  19. Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews. Cancer, 5, 161–171.

    Article  Google Scholar 

  20. Siddiqui, I., Adhami, V., Ahmad, N., & Mukhtar, H. (2010). Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutrition and Cancer, 62(7), 883–890.

    Article  Google Scholar 

  21. Muqbil, I., Masood, A., Sarkar, F., Mohammad, R., & Azmi, A. (2011). Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers, 3, 428–445.

    Article  Google Scholar 

  22. Singh, D., Jagannathan, R., Khandelwal, P., Abraham, P., & Poddar, P. (2012). In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale, 5(5), 1882–1893.

    Article  Google Scholar 

  23. Sindhu, K., Indra, R., Rajaram, A., Sreeram, K., & Rajaram, R. (2011). Investigations on the interaction of gold-curcumin nanoparticles with human peripheral blood lymphocytes. Journal of Biomedical Nanotechnology, 7(1), 56.

    Article  Google Scholar 

  24. Thakor, A., Jokerst, J., Zavaleta, C., Massoud, T., & Gambhir, S. (2011). Gold nanoparticles: a revival in precious metal administration to patients. Nano Letters, 11(10), 4029–4036.

    Article  Google Scholar 

  25. Luo, Y. (2007). Size-controlled preparation of polyelectrolyte-protected gold nanoparticles by natural sunlight radiation. Materials Letters, 61, 2164–2166.

    Article  Google Scholar 

  26. Brewer, S., Glomm, W., Johnson, M., Knag, M., & Franzen, S. (2005). Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir, 21, 9303–9307.

    Article  Google Scholar 

  27. Salcedo, A., & Philippine, F. (2013). Citrate-capped gold nanoparticles as colorimetric reagent for copper(II) ions. Science Letters, 6(1), 90–96.

    Google Scholar 

  28. Vemuri, S., Banalaa, R., Mukherjeec, S., Uppulad, P., S. GPVa, Gurava, A., & Malarvilli, T. (2019). Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: synthesis, biological evaluation, molecular modeling studies. Materials Science & Engineering C, 99, 417–429.

    Article  Google Scholar 

  29. Liu, R., Pei, Q., Shou, T., Zhang, W., Hu, J., & Li, W. (2019). Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. International Journal of Nanomedicine, 14, 4091–4103.

    Article  Google Scholar 

  30. Amanloua, N., Parsab, M., Rostamizadeh, K., Sadighianc, S., & Moghaddam, F. (2019). Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Materials Chemistry and Physics, 226, 151–157.

    Article  Google Scholar 

  31. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104–105115.

    Article  Google Scholar 

  32. Parida, U. K., Bindhani, B. K., & Nayak, P. (2011). Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World Journal of Nano Science and Engineering, 1, 93–98.

    Article  Google Scholar 

  33. Husseiny, M., El-Aziz, M., Badr, Y., & Mahmoud, M. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta, A67, 1003.

    Article  Google Scholar 

  34. Khalil, M., Ismail, E., & El-Magdoub, F. (2012). Biosynthesis of Au nanoparticles using olive leaf extract. Arabian Journal of Chemistry, 5, 431–437.

    Article  Google Scholar 

  35. Kaewnopparat, N., Kaewnopparat, S., Jangwang, A., Maneenaun, D., Chuchome, T., & Panichayupakaranant, P. (2009). Increased solubility, dissolution and physicochemical studies of curcumin polyvinyl pyrrolidone K-30 solid dispersions. World Academy of Science, Engineering and Technology, 55.

  36. Chuah, L., Billa, N., Roberts, C., Burley, J., & Manickam, S. (2011). Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharmaceutical Development and Technology, 1–9.

  37. Duana, J., Zhanga, Y., Hana, S., Chena, Y., Lib, B., Liaoa, M., Chena, W., Dengc, X., Zhaoa, J., & Huangd, B. (2010). Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles. International Journal of Pharmaceutics, 400, 211–220.

    Article  Google Scholar 

  38. Gao, Y., Li, Z., Sun, M., Li, H., Guo, C., Cui, J., Li, A., Cao, F., Xi, Y., Lou, H., & Zhai, G. (2010). Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Development and Industrial Pharmacy, 36(10), 1225–1234.

    Article  Google Scholar 

  39. Kamble, V., Jagdale, D., & Kadam, V. (2010). Nanosuspension a novel drug delivery system. International Journal of Pharma and Bio Sciences, 1(4), 352–360.

    Google Scholar 

  40. Yallapu, M., Othman, S., Curtis, E., Bauer, N., Chauhan, N., Kumar, D., Jaggi, M., & Chauhan, S. (2012). Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. International Journal of Nanomedicine, 7, 1761–1779.

    Google Scholar 

  41. Wang, Y., Pan, M., Cheng, A., Lin, L., Ho, Y., Hsieh, C., & Lin, J. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 15(12), 1867–1876.

    Article  Google Scholar 

  42. Shi, M., Cai, Q., Yao, L., Mao, Y., Ming, Y., & Ouyang, G. (2006). Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biology International, 30, 221–226.

    Article  Google Scholar 

  43. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Saad Elbialy.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbialy, N.S., Abdelfatah, E.A. & Khalil, W.A. Antitumor Activity of Curcumin-Green Synthesized Gold Nanoparticles: In Vitro Study. BioNanoSci. 9, 813–820 (2019). https://doi.org/10.1007/s12668-019-00660-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00660-w

Keywords

Navigation