Skip to main content

Advertisement

Log in

Biogenic Synthesis of Silver Nanoparticles from Avicennia marina Seed Extract and Its Antibacterial Potential

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Avicennia marina is the most abundant and widely distributed mangrove species and has been used in traditional medicine for treating skin diseases, rheumatism, ulcers, and smallpox. However, the biomedical potential of its seeds remains poorly characterized. The current contribution investigated the antibacterial potential of silver nanoparticles (AgNPs) synthesized from aqueous A. marina seed extract. When characterized using UV analysis and TEM analysis, the nanoparticles exhibited maximum absorption at 420 nm and average size of 5–10 nm. Analysis by FTIR revealed eight prominent absorption peaks at 3333, 3305, 2927, 2107, 1565, 1301, 1135, and 773 cm−1 suggesting the involvement of amide, carboxylic, aliphatic amines, and amino acid groups in the seed extract in the capping of nanoparticles. The AgNPs displayed inhibitory activity against a range of human pathogenic bacterial species: Escherichia coli (ATCC 35218), Klebsiella pneumoniae (ATCC 700603), Staphylococcus aureus (ATCC 43300), Enterococcus faecalis (ATCC 5129), and Pseudomonas aeruginosa (ATCC 27853). E. coli was the most sensitive to the silver nanoparticles (MIC 6.25 μg/mL) followed by K. pneumonia and P. aeruginosa (MIC 12.5 μg/mL). E. faecalis was resistant to silver nanoparticles. The biosynthesized AgNPs from A. marina seed extract display broad spectrum antibacterial activity and may be useful in treating antibiotic-resistant strains of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001.

    Article  Google Scholar 

  2. Mohanta, Y. K., Panda, S. K., Jayabalan, R., Sharma, N., Bastia, A. K., & Mohanta, T. K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences, 4(14). https://doi.org/10.3389/fmolb.2017.00014.

  3. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983. https://doi.org/10.1039/C3RA44507K.

    Article  Google Scholar 

  4. Percival, S. L., Bowler, P. G., & Russell, D. (2005). Bacterial resistance to silver in wound care. The Journal of Hospital Infection, 60(1), 1–7. https://doi.org/10.1016/j.jhin.2004.11.014.

    Article  Google Scholar 

  5. Ojo, O. A., Oyinloye, B. E., Ojo, A. B., Afolabi, O. B., Peters, O. A., Olaiya, O., Fadaka, A., Jonathan, J., & Osunlana, O. (2017). Green synthesis of silver nanoparticles (AgNPs) using Talinum triangulare (Jacq.) Willd. Leaf extract and monitoring their antimicrobial activity. Journal of Bionanoscience, 11(4), 292–296. https://doi.org/10.1166/jbns.2017.1452.

    Article  Google Scholar 

  6. Logeswari, P., Silambarasan, S., & Abraham, J. (2013). Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica, 20(3), 1049–1054. https://doi.org/10.1016/j.scient.2013.05.016.

    Article  Google Scholar 

  7. Mallick, K., Witcomb, M. J., & Scurrell, M. S. (2005). Self-assembly of silver nanoparticles in a polymer solvent: Formation of a nanochain through nanoscale soldering. Materials Chemistry and Physics, 90(2), 221–224. https://doi.org/10.1016/j.matchemphys.2004.10.030.

    Article  Google Scholar 

  8. Liu, Y.-C., & Lin, L.-H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry Communications, 6(11), 1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010.

    Article  Google Scholar 

  9. Smetana, A. B., Klabunde, K. J., Marchin, G. R., & Sorensen, C. M. (2008). Biocidal activity of Nanocrystalline silver powders and particles. Langmuir, 24(14), 7457–7464. https://doi.org/10.1021/la800091y.

    Article  Google Scholar 

  10. Ebrahiminezhad, A., Taghizadeh, S.-M., Taghizadeh, S., & Ghasemi, Y. (2017). Chemical and biological approaches for the synthesis of silver nanoparticles; a mini review, vol 3. 2017. In vol 2.

    Google Scholar 

  11. Mohanta, Y. K., Panda, S. K., Biswas, K., Tamang, A., Bandyopadhyay, J., De, D., Mohanta, D., & Bastia, A. K. (2016). Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): In vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnology, 10(6), 438–444.

    Article  Google Scholar 

  12. Jagtap, U. B., & Bapat, V. A. (2013). Green synthesis of silver nanoparticles using Artocarpus heterophyllus lam. Seed extract and its antibacterial activity. Industrial Crops and Products, 46, 132–137.

    Article  Google Scholar 

  13. Otari, S., Patil, R., Ghosh, S., & Pawar, S. (2014). Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota (L.) seeds and its inhibitory action against Candida species. Materials Letters, 116, 367–369.

    Article  Google Scholar 

  14. Fardin, K., & Young, M. (2015). Antifungal potential of Avicennia schaueriana Stapf & Leech.(Acanthaceae) against Cladosporium and Colletotrichum species. Letters in Applied Microbiology, 61(1), 50–57.

    Article  Google Scholar 

  15. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Syed Ali, M., Vijayakumar, V., & Kumaraguru, A. K. (2012). Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience, 2(2), 143–147. https://doi.org/10.1007/s13204-011-0048-6.

    Article  Google Scholar 

  16. Bhimba, B. V., Franco, D. A. D., Mathew, J. M., Jose, G. M., Joel, E. L., & Thangaraj, M. (2012). Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chinese Journal of Natural Medicines, 10(1), 77–80.

    Article  Google Scholar 

  17. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijayakumar, V., Selvam, S., Dhineshkumar, M., & Kumaraguru, A. (2011). Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacific Journal of Tropical Medicine, 4(10), 799–803.

    Article  Google Scholar 

  18. Parashar, U. K., Saxena, P. S., & Srivastava, A. (2009). Bioinspired synthesis of silver nanoparticles. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1), 159–166.

    Google Scholar 

  19. Vallinova, P. (1999). Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A. Villanova, PA: National Committee for Clinical Laboratory Standards.

    Google Scholar 

  20. Annamalai, A., Christina, V. L. P., Sudha, D., Kalpana, M., & Lakshmi, P. T. V. (2013). Green synthesis, characterization and antimicrobial activity of au NPs using Euphorbia hirta L. leaf extract. Colloids and Surfaces B: Biointerfaces, 108, 60–65. https://doi.org/10.1016/j.colsurfb.2013.02.012.

    Article  Google Scholar 

  21. Velu, M., Lee, J.-H., Chang, W.-S., Lovanh, N., Park, Y.-J., Jayanthi, P., Palanivel, V., & Oh, B.-T. (2017). Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3 Biotech, 7(2), 147. https://doi.org/10.1007/s13205-017-0749-y.

    Article  Google Scholar 

  22. Velmurugan, P., Shim, J., Kim, K., & Oh, B.-T. (2016). Prunus × yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Materials Letters, 174, 61–65. https://doi.org/10.1016/j.matlet.2016.03.069.

    Article  Google Scholar 

  23. Nakkala, J. R., Mata, R., Gupta, A. K., & Sadras, S. R. (2014). Biological activities of green silver nanoparticles synthesized with Acorous Calamus rhizome extract. European Journal of Medicinal Chemistry, 85, 784–794. https://doi.org/10.1016/j.ejmech.2014.08.024.

    Article  Google Scholar 

  24. Moodley, J., Krishna, S. B. N., Pillay, K., Sershen, & Govender, P. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1), 015011.

    Google Scholar 

  25. Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., & Misra, A. (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1), 134–139. https://doi.org/10.1016/j.colsurfa.2009.02.008.

    Article  Google Scholar 

  26. Sigamoney, M., Shaik, S., Govender, P., Krishna, S. B. N., & Sershen. (2016). African leafy vegetables as bio-factories for silver nanoparticles: A case study on Amaranthus dubius C Mart. Ex Thell. South African Journal of Botany, 103, 230–240. https://doi.org/10.1016/j.sajb.2015.08.022.

    Article  Google Scholar 

  27. Ahmad, N., Sharma, S., Alam, M. K., Singh, V. N., Shamsi, S. F., Mehta, B. R., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), 81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029.

    Article  Google Scholar 

  28. Vineet, K., YS, C., & Kumar, Y. S. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology & Biotechnology, 85(10), 1301–1309. https://doi.org/10.1002/jctb.2427.

    Article  Google Scholar 

  29. Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5.

    Article  Google Scholar 

  30. Lee, G.-J., Shin, S.-I., Kim, Y.-C., & Oh, S.-G. (2004). Preparation of silver nanorods through the control of temperature and pH of reaction medium. Materials Chemistry and Physics, 84(2), 197–204. https://doi.org/10.1016/j.matchemphys.2003.11.024.

    Article  Google Scholar 

  31. Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., & Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15(2), 113–120. https://doi.org/10.1016/j.jscs.2010.06.004.

    Article  Google Scholar 

  32. Cho, K.-H., Park, J.-E., Osaka, T., & Park, S.-G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956–960.

    Article  Google Scholar 

  33. Sytu, M. R. C., & Camacho, D. H. (2018). Green synthesis of silver nanoparticles (AgNPs) from Lenzites betulina and the potential synergistic effect of AgNP and capping biomolecules in enhancing antioxidant activity. BioNanoScience, 8(3), 835–844.

    Article  Google Scholar 

  34. Huang, C., Lu, C.-K., Tu, M.-C., Chang, J.-H., Chen, Y.-J., Tu, Y.-H., & Huang, H.-C. (2016). Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget, 7(24), 35874–35893. https://doi.org/10.18632/oncotarget.8624.

    Article  Google Scholar 

  35. Ghoreishi, S. M., Behpour, M., & Khayatkashani, M. (2011). Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E: Low-dimensional Systems and Nanostructures, 44(1), 97–104. https://doi.org/10.1016/j.physe.2011.07.008.

    Article  Google Scholar 

  36. Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces, 79(2), 488–493. https://doi.org/10.1016/j.colsurfb.2010.05.018.

    Article  Google Scholar 

  37. Gole, A., Dash, C., Ramakrishnan, V., Sainkar, S. R., Mandale, A. B., Rao, M., & Sastry, M. (2001). Pepsin−gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir, 17(5), 1674–1679. https://doi.org/10.1021/la001164w.

    Article  Google Scholar 

  38. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313–318. https://doi.org/10.1016/S0927-7765(02)00174-1.

    Article  Google Scholar 

  39. Huang, H., & Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydrate Research, 339(15), 2627–2631. https://doi.org/10.1016/j.carres.2004.08.005.

    Article  Google Scholar 

  40. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. Coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.

    Article  Google Scholar 

  41. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.

    Article  Google Scholar 

  42. Spadaro, J. A., Berger, T. J., Barranco, S. D., Chapin, S. E., & Becker, R. O. (1974). Antibacterial effects of silver electrodes with weak direct current. Antimicrobial Agents and Chemotherapy, 6(5), 637–642.

    Article  Google Scholar 

  43. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Tj, N., & Zbořil, R. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110(33), 16248–16253.

    Article  Google Scholar 

  44. Vivekanandhan, S., Misra, M., & Mohanty, A. K. (2009). Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: An investigation on different soybean varieties. Journal of Nanoscience and Nanotechnology, 9(12), 6828–6833.

    Article  Google Scholar 

  45. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103.

    Article  Google Scholar 

  46. Ravikumar, S., Gnanadesigan, M., Suganthi, P., & Ramalakshmi, A. (2010). Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. International Journal of Medicine and Medical Sciences, 2(3), 94–99.

    Google Scholar 

  47. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720.

    Article  Google Scholar 

  48. Vanlalveni, C., Rajkumari, K., Biswas, A., Adhikari, P. P., Lalfakzuala, R., & Rokhum, L. (2018). Green synthesis of silver nanoparticles using Nostoc linckia and its antimicrobial activity: A novel biological approach. BioNanoScience, 8(2), 624–631.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. Ajay Bissessur (School of Chemistry and Physics, UKZN, Westville Campus, Durban) for assisting with FTIR analysis.

Author information

Authors and Affiliations

Authors

Contributions

KSBN performed the experiments, data analysis and prepared the manuscript. NM assisted with data analysis and electron microscopy, S designed the experiments and reviewed the manuscript. KSBN, NM, S, and JKA edited and revised the manuscript.

Corresponding author

Correspondence to Krishna Suresh Babu Naidu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, K.S.B., Murugan, N., Adam, J.K. et al. Biogenic Synthesis of Silver Nanoparticles from Avicennia marina Seed Extract and Its Antibacterial Potential. BioNanoSci. 9, 266–273 (2019). https://doi.org/10.1007/s12668-019-00612-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00612-4

Keywords

Navigation