Skip to main content

Advertisement

Log in

Synthesis of Reduced Graphene Oxide-Silver Nanocomposites and Assessing Their Toxicity on the Green Microalga Chlorella vulgaris

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The growing demands for nanotechnology in the recent years have resulted in environmental release of nanomaterials. In the current study, reduced graphene oxide-silver nanocomposites (Ag-rGO) were synthesized by an easy method and their characteristics were determined using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) techniques. Subsequently, toxicity of Ag-rGO was examined on the marine microalga Chlorella vulgaris. After treatment of algal cells with different concentrations of Ag-rGO for 24 h, growth parameters have been significantly decreased. In addition, a considerable reduction in viability of the treated cells was designated. Further considerable effects of Ag-rGO treatments have been revealed by increments in the activities of a number of antioxidant enzymes and reductions in the photosynthetic pigment contents. Our results showed that the main toxic effects of Ag-rGO are associated with the presence of Ag nanoparticles in the structure of these nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu, X., & Zhou, Q. (2013). Health and ecosystem risks of graphene. Chemical Reviews, 113(5), 3815–3835.

    Article  Google Scholar 

  2. Jastrzebska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14(12), 1–21.

    Article  Google Scholar 

  3. Hu, C., Wang, Q., Zhao, H., Wang, L., Guo, S., & Li, X. (2015). Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere, 128, 184–190.

    Article  Google Scholar 

  4. Shao, W., Liu, X., Min, H., Dong, G., Feng, Q., & Zuo, S. (2015). Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Applied Materials & Interfaces, 7(12), 6966–6973.

    Article  Google Scholar 

  5. Zhao, S., Wang, Q., Zhao, Y., Rui, Q., & Wang, D. (2015). Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environmental Toxicology and Pharmacology, 39(1), 145–156.

    Article  Google Scholar 

  6. Thu, T. V., Ko, P. J., Phuc, N. H. H., & Sandhu, A. (2013). Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids. Journal of Nanoparticle Research, 15(10), 1–13.

    Article  Google Scholar 

  7. Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic Toxicology, 94(1), 56–61.

    Article  Google Scholar 

  8. Chen, X., Zhu, X., Li, R., Yao, H., Lu, Z., & Yang, X. (2012). Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open Journal of Ecology, 2(01), 21–28.

    Article  Google Scholar 

  9. Hu, X., Lu, K., Mu, L., Kang, J., & Zhou, Q. (2014). Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 80, 665–676.

    Article  Google Scholar 

  10. Chen, T.-H., Lin, C.-Y., & Tseng, M.-C. (2011). Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Marine Pollution Bulletin, 63(5), 303–308.

    Article  Google Scholar 

  11. Khataee, A., Movafeghi, A., Nazari, F., Vafaei, F., Dadpour, M. R., Hanifehpour, Y., & Joo, S. W. (2014). The toxic effects of L-cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. Journal of Nanoparticle Research, 16(12), 1–10.

    Article  Google Scholar 

  12. Cherchi, C., & Gu, A. Z. (2010). Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science & Technology, 44(21), 8302–8307.

    Article  Google Scholar 

  13. Sadiq, I. M., Dalai, S., Chandrasekaran, N., & Mukherjee, A. (2011). Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 74(5), 1180–1187.

    Article  Google Scholar 

  14. Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212.

    Article  Google Scholar 

  15. Jafarirad, S., Kordi, M., & Kosari-Nasab, M. (2017). Extracellular one-pot synthesis of nanosilver using Hyssopus officinalis L.: a biophysical approach on bioconstituent-Ag+ interactions. Inorganic and Nano-Metal Chemistry, 47(4), 632–638.

    Article  Google Scholar 

  16. Suman, T., Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30.

    Article  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  Google Scholar 

  18. Obinger, C., Maj, M., Nicholls, P., & Loewen, P. (1997). Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Archives of Biochemistry and Biophysics, 342(1), 58–67.

    Article  Google Scholar 

  19. Boominathan, R., & Doran, P. M. (2002). Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist, 156(2), 205–215.

    Article  Google Scholar 

  20. Winterbourn, C. C., McGrath, B. M., & Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. Biochemical Journal, 155(3), 493–502.

    Article  Google Scholar 

  21. Sukran, D., GUNES, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-a, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13–18.

    Google Scholar 

  22. Wang, S., Zhang, Y., Ma, H. L., Zhang, Q., Xu, W., Peng, J., Li, J., Yu, Z. Z., & Zhai, M. (2013). Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon, 55, 245–252.

    Article  Google Scholar 

  23. Fu, L., Zheng, Y., Fu, Z., Wang, A., & Cai, W. (2015). Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite. Bulletin of Materials Science, 38(3), 611–616.

    Article  Google Scholar 

  24. Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C., & Sun, Y. (2011). Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 83(4), 510–516.

    Article  Google Scholar 

  25. Zhou, H., Wang, X., Zhou, Y., Yao, H., & Ahmad, F. (2014). Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Analytical and Bioanalytical Chemistry, 406(15), 3689–3695.

    Article  Google Scholar 

  26. Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85.

    Article  Google Scholar 

  27. Ji, J., Long, Z., & Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 170(2), 525–530.

    Article  Google Scholar 

  28. Qian, H., Li, J., Pan, X., Sun, L., Lu, T., Ran, H., & Fu, Z. (2011). Combined effect of copper and cadmium on heavy metal ion bioaccumulation and antioxidant enzymes induction in Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 87(5), 512–516.

    Article  Google Scholar 

  29. Rai, U., Singh, N., Upadhyay, A., & Verma, S. (2013). Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresource Technology, 136, 604–609.

    Article  Google Scholar 

  30. Wang, H. Y., Zeng, X. B., Guo, S. Y., & Li, Z. T. (2008). Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics, 29(1), 39–46.

    Article  Google Scholar 

  31. Mallick, N. (2004). Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. Journal of Plant Physiology, 161(5), 591–597.

    Article  Google Scholar 

  32. Chongpraditnun, P., Mori, S., & Chino, M. (1992). Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant and Cell Physiology, 33(3), 239–244.

    Article  Google Scholar 

  33. Gupta, D., Nicoloso, F., Schetinger, M., Rossato, L., Pereira, L., Castro, G., Srivastava, S., & Tripathi, R. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 172(1), 479–484.

    Article  Google Scholar 

  34. Dazy, M., Masfaraud, J.-F., & Ferard, J.-F. (2009). Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere, 75(3), 297–302.

    Article  Google Scholar 

  35. Qian, H., Chen, W., Li, J., Wang, J., Zhou, Z., Liu, W., & Fu, Z. (2009). The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquatic Toxicology, 92(4), 250–257.

    Article  Google Scholar 

  36. Gao, Q., & Tam, N. (2011). Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere, 82(3), 346–354.

    Article  Google Scholar 

  37. di Toppi, L. S., Musetti, R., Marabottini, R., Corradi, M. G., Vattuone, Z., Favali, M. A., & Badiani, M. (2004). Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Functional Plant Biology, 31(4), 329–338.

    Article  Google Scholar 

  38. Assche, F. V., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13(3), 195–206.

    Article  Google Scholar 

  39. Frueh, J., Gai, M., Yang, Z., & He, Q. (2014). Influence of polyelectrolyte multilayer coating on the degree and type of biofouling in freshwater environment. Journal of Nanoscience and Nanotechnology, 14(6), 4341–4350.

    Article  Google Scholar 

  40. Cooper, S. P., Finlay, J. A., Cone, G., Callow, M. E., Callow, J. A., & Brennan, A. B. (2011). Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. Biofouling, 27(8), 881–892.

    Article  Google Scholar 

  41. Voulvoulis, N., Scrimshaw, M., & Lester, J. (1999). Alternative antifouling biocides. Applied Organometallic Chemistry, 13(3), 135–143.

    Article  Google Scholar 

  42. Chaudhury, M. K., Finlay, J. A., Chung, J. Y., Callow, M. E., & Callow, J. A. (2005). The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane) (PDMS) model networks. Biofouling, 21(1), 41–48.

    Article  Google Scholar 

  43. Xiao, L., Thompson, S. E., Rohrig, M., Callow, M. E., Callow, J. A., Grunze, M., & Rosenhahn, A. (2013). Hot embossed microtopographic gradients reveal morphological cues that guide the settlement of zoospores. Langmuir, 29(4), 1093–1099.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to R. Tarrahi for critically reading the manuscript. The authors thank the University of Tabriz, Iran, for all the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Movafeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, F., Movafeghi, A., Jafarirad, S. et al. Synthesis of Reduced Graphene Oxide-Silver Nanocomposites and Assessing Their Toxicity on the Green Microalga Chlorella vulgaris. BioNanoSci. 8, 997–1007 (2018). https://doi.org/10.1007/s12668-018-0561-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0561-0

Keywords

Navigation