Skip to main content

Advertisement

Log in

Role of Acetylcholinesterase in β-Amyloid Aggregation Studied by Accelerated Molecular Dynamics

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Mechanisms of Alzheimer’s disease development are still under investigation. It was shown that acetylcholinesterase promotes aggregation of β-amyloid. Accelerated molecular dynamics simulations were performed to investigate molecular mechanisms of this process. Results showed that Aβ is strongly attracted to the surface of acetylcholinesterase and forms stable complexes. It was hypothesized that acetylcholinesterase serves as a nucleation center for propagation of β-amyloid aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agis-Torres, A., Solhuber, M., Fernandez, M., & Sanchez-Montero, J. M. (2014). Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol, 12(1), 2–36. doi:10.2174/1570159X113116660047.

    Article  Google Scholar 

  2. Inestrosa, N. C., Dinamarca, M. C., & Alvarez, A. (2008). Amyloid–cholinesterase interactions. FEBS J, 275(4), 625–632. doi:10.1111/j.1742-4658.2007.06238.x.

    Article  Google Scholar 

  3. Semenov, V. E., Zueva, I. V., Mukhamedyarov, M. A., Lushchekina, S. V., Kharlamova, A. D., Petukhova, E. O., Mikhailov, A. S., Podyachev, S. N., Saifina, L. F., Petrov, K. A., Minnekhanova, O. A., Zobov, V. V., Nikolsky, E. E., Masson, P., & Reznik, V. S. (2015). 6-methyluracil derivatives as bifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. ChemMedChem, 10(11), 1863–1874. doi:10.1002/cmdc.201500334.

    Article  Google Scholar 

  4. De Ferrari, G. V., Canales, M. A., Shin, I., Weiner, L. M., Silman, I., & Inestrosa, N. C. (2001). A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry, 40(35), 10447–10457. doi:10.1021/bi0101392.

    Article  Google Scholar 

  5. Mishra, P., Ayyannan, S. R., & Panda, G. (2015). Perspectives on inhibiting beta-amyloid aggregation through structure-based drug design. ChemMedChem, 10(9), 1467–1474. doi:10.1002/cmdc.201500215.

    Article  Google Scholar 

  6. Hou, L. N., Xu, J. R., Zhao, Q. N., Gao, X. L., Cui, Y. Y., Xu, J., Wang, H., & Chen, H. Z. (2014). A new motif in the N-terminal of acetylcholinesterase triggers amyloid-beta aggregation and deposition. CNS neuroscience & therapeutics, 20(1), 59–66. doi:10.1111/cns.12161.

    Article  Google Scholar 

  7. Cheung, J., Gary, E. N., Shiomi, K., & Rosenberry, T. L. (2013). Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett, 4(11), 1091–1096. doi:10.1021/ml400304w.

    Article  Google Scholar 

  8. Kharlamova, A. D., Lushchekina, S. V., Petrov, K. A., Kots, E. D., Nachon, F. V., Villard-Wandhammer, M., Zueva, I. V., Krejci, E., Reznik, V. S., Zobov, V. V., Nikolsky, E. E., & Masson, P. (2016). Slow-binding inhibition of acetylcholinesterase by an alkylammonium derivative of 6-methyluracil: mechanism and possible advantages for myasthenia gravis treatment. Biochem J, 473(9), 1225–1236. doi:10.1042/BCJ20160084.

    Article  Google Scholar 

  9. Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D'Ursi, A. M., Temussi, P. A., & Picone, D. (2002). Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment. Eur J Biochem, 269(22), 5642–5648. doi:10.1046/j.1432-1033.2002.03271.x.

    Article  Google Scholar 

  10. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5.

    Article  Google Scholar 

  11. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. J Comput Chem, 26(16), 1781–1802. doi:10.1002/jcc.20289.

    Article  Google Scholar 

  12. Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput, 8(9), 3257–3273. doi:10.1021/ct300400x.

    Article  Google Scholar 

  13. Sadovnichy, V., Tikhonravov, A., Voevodin, V., & Opanasenko, V. (2013). "Lomonosov": supercomputing at Moscow state university. In J. S. Vetter (Ed.), Contemporary high performance computing: from Petascale toward Exascale (pp. 283–307). Boca Raton, USA: CRC Press.

    Google Scholar 

  14. Hamelberg, D., Mongan, J., & McCammon, J. A. (2004). Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys, 120(24), 11919–11929. doi:10.1063/1.1755656.

    Article  Google Scholar 

  15. Jiménez-García, B., Pons, C., & Fernández-Recio, J. (2013). pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics, 29(13), 1698–1699. doi:10.1093/bioinformatics/btt262.

    Article  Google Scholar 

  16. Bartolini, M., Bertucci, C., Bolognesi, M. L., Cavalli, A., Melchiorre, C., & Andrisano, V. (2007). Insight into the kinetic of amyloid beta (1-42) peptide self-aggregation: elucidation of inhibitors’ mechanism of action. Chembiochem, 8(17), 2152–2161. doi:10.1002/cbic.200700427.

    Article  Google Scholar 

  17. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. J Mol Biol, 7(1), 95–99. doi:10.1016/S0022-2836(63)80023-6.

    Article  Google Scholar 

  18. Sussman, J., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253(5022), 872–879. doi:10.1126/science.1678899.

    Article  Google Scholar 

  19. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A, 98(18), 10037–10041. doi:10.1073/pnas.181342398.

    Article  Google Scholar 

  20. Masson, P., & Lushchekina, S. V. (2016). Slow-binding inhibition of cholinesterases, pharmacological and toxicological relevance. Arch Biochem Biophys, 593, 60–68. doi:10.1016/j.abb.2016.02.010.

    Article  Google Scholar 

  21. Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I., & Sussman, J. L. (1993). An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc Natl Acad Sci U S A, 90(11), 5128–5132.

    Article  Google Scholar 

  22. Antosiewicz, J., Gilson, M. K., & McCammon, J. A. (1994). Acetylcholinesterase: effects of ionic strength and dimerization on the rate constants. Isr J Chem, 34(2), 151–158. doi:10.1002/ijch.199400020.

    Article  Google Scholar 

  23. Porschke, D., Creminon, C., Cousin, X., Bon, C., Sussman, J., & Silman, I. (1996). Electrooptical measurements demonstrate a large permanent dipole moment associated with acetylcholinesterase. Biophys J, 70(4), 1603–1608. doi:10.1016/S0006-3495(96)79759-X.

    Article  Google Scholar 

  24. Felder, C. E., Botti, S. A., Lifson, S., Silman, I., & Sussman, J. L. (1997). External and internal electrostatic potentials of cholinesterase models. J Mol Graph Model, 15(5), 318–327.

    Article  Google Scholar 

  25. Felder CE, Prilusky J, Silman I, Sussman JL (2007) A server and database for dipole moments of proteins. Nucleic Acids Res 35 (Web Server issue):W512–521. doi:10.1093/nar/gkm307

  26. Voevodin VV, Zhumatiy SA, Sobolev SI, Antonov AS, Bryzgalov PA, Nikitenko DA, Stefanov KS, Voevodin VV (2012) Practice of "Lomonosov" Supercomputer. Open Systems Journal 7:http://www.osp.ru/os/2012/2007/13017641/

Download references

Acknowledgements

This research was supported by the subsidy of the Russian Government to support the Program of Competitive Growth of Kazan Federal University (PM), and molecular modeling work was supported by the Russian Science Foundation (project number 14-50-00014 to SL and KP). Authors are grateful to the M.V. Lomonosov State University Research Supercomputer Center [26] and to the Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences—branch of Federal State Institution “Federal Scientific Research Institute for System Analysis of the Russian Academy of Sciences” for providing supercomputer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofya V. Lushchekina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushchekina, S.V., Kots, E.D., Novichkova, D.A. et al. Role of Acetylcholinesterase in β-Amyloid Aggregation Studied by Accelerated Molecular Dynamics. BioNanoSci. 7, 396–402 (2017). https://doi.org/10.1007/s12668-016-0375-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0375-x

Keywords

Navigation