Skip to main content
Log in

Structural Changes in the Pancreas and Its Blood Vessels at the Early Stages of Ischemia

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The rat pancreas structure was studied in the settings of experimental ischemia using the methods of electron microscopy, EPR and NMR spectroscopy. The earliest changes in the pancreatic capillary structure occur in 5 min after ischemia. As the ischemia progresses, there is an increased intensity of signal from iron-sulfur proteins as well as its decrease from an oxidized center of succinate coenzyme reductase, a decreased intensity of that from phosphocreatine and ATP γ-fraction as well as a rising intensity of signal from inorganic phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Danese, S., Dejana, E., Fiocchi, C. (2007). Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation and inflammation. The Journal of Immunology, 178, 6017–6022.

    Article  Google Scholar 

  2. Smit, M., Buddingh, K. T., Bosma, B., et al. (2016). Abdominal compartment syndrome and intra-abdominal ischemia in patients with severe acute pancreatitis. World Journal of Surgery, 40, 1454–1461. doi:10.1007/s00268-015-3388-7.

    Article  Google Scholar 

  3. Vignaud, A., Hourde, C., Medja, F., Agbulut, O., Butler-Browne, G., Ferry, A. (2010). Impaired skeletal muscle repair after ischemia-reperfusion injury in mice. Journal of Biomedicine and Biotechnology, 2010, 724914.

    Article  Google Scholar 

  4. Drummond, A., Macdonald, J., Dumas, J., et al. (2004). Development of a system for simultaneous 31P NMR and optical transmembrane potential measurement in rabbit hearts. Engineering in Medicine and Biology Society, 3, 2102–2104.

    Google Scholar 

  5. Hazarika, S., & Angelo, M. (2008). Myocyte specific overexpression of myoglobin impairs angiogenesis after hind-limb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 2144–2150.

    Article  Google Scholar 

  6. Maccioni, F., Martinelli, M., Alansari, N., Kagarmanova, A., Demarco, V., Zippi, M., et al. (2010). Magnetic resonance cholangiography: past, present and future: a review. European Review for Medical and Pharmacological Sciences, 14, 721–725.

    Google Scholar 

  7. Shyu, J. Y., Nisha, M. D., Sainani, I., et al. (2014). Necrotizing pancreatitis: diagnosis, imaging, and intervention. RadioGraphics, 34, 1218–1239.

    Article  Google Scholar 

  8. Ahmed, S., Siddiqui, A. K., Siddiqui, R. K., et al. (2003). Acute pancreatitis during sickle cell vaso-occlusive painful crisis. American Journal of Hematology, 73(3), 190–193.

    Article  Google Scholar 

  9. Nishiyama, Y., Endo, Y., Nemoto, T., Bouzier-Sorec, A.-K., Wong, A. (2015). High-resolution NMR-based metabolic detection of microgram biopsies using a 1 mm HRμMAS probe. The Royal Society of Chemistry, 38, 42.

    Google Scholar 

  10. Gorodetsky, A. A., Kirilyuk, I. A., Khramtsov, V. V., Komarov, D. A. (2016). Functional electron paramagnetic resonance imaging of ischemic rat heart: monitoring of tissue oxygenation and pH. Magnetic Resonance in Medicine, 76(N 1), 350–358. doi:10.1002/mrm.25867.IF=3.782.

    Article  Google Scholar 

  11. Felix W., D. Shaw, J. Bruce. (1988) Biomedical magnetic resonance imaging./Kneeland VCH Publishers Jnc. 601 p.

  12. Semmler W. (2005) In vivo magnetic resonance spectroscopy: basic principles and clinical applications in oncology. Deutsches Krebsforschungszentrum Heidelberg. 157–171.

  13. Scarabelli, T. M., Stephanou, A., Pasini, E., Comini, L., Raddino, R. (2002). Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circulation Research, 90, 745–748.

    Article  Google Scholar 

  14. Massberg, S., Enders, G., Leiderer, R., Eisenmenger, S., Vestweber, D., Krombach, F., et al. (1998). Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood, 92(2), 507–515.

    Google Scholar 

  15. Duchen, M. R., Surin, A., Jacobson, J. (2003). Imaging mitochondrial function in intact cells. Methods in Enzymology, 361, 353–389.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Government Program of Competitive Growth of Kazan Federal University and subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert A. Rizvanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadirov, R.K., Arkhipova, S.S., Shahmardanova, S.A. et al. Structural Changes in the Pancreas and Its Blood Vessels at the Early Stages of Ischemia. BioNanoSci. 6, 293–296 (2016). https://doi.org/10.1007/s12668-016-0265-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0265-2

Keywords

Navigation