Skip to main content
Log in

Green Synthesis, Characterization and Antimicrobial Potential of Sliver Nanoparticles Using Three Mangrove Plants from Indian Sundarban

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green synthesis of silver nanoparticles (AgNPs) is an alternative to the conventional synthesis procedures which includes physical and chemical methods mostly requiring toxic chemicals, energy, high temperature, and pressure. This study involves biosynthesis of AgNPs using mangroves, a salt-tolerant tidal vegetation with very unique morphology and unusual physiological processes. Our study reports the first ever use of three mangrove plants from Indian Sundarban for bioreduction, namely Avicennia alba, Sonneratia caseolaris, and Sonneratia apetela. The biosynthesized AgNPs were characterized by UV–vis spectroscope, particle size analyzer, scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectrometer, and atomic force microscope. Antimicrobial activities of these AgNPs were assessed against Escherichia coli, Agrobacterium tumefaciens, Streptococcus mutans, Staphylococcus aureus, Tricophyton rubrum, and Aspergillus flavus. Biosynthesized AgNPs showed absorption maxima between 419 and 448 nm which corresponds to their respective surface plasmon resonance. Previous biosynthesis of AgNPs using mangrove plants have reported 60–110 nm average particle size, whereas in our study, S. caseolaris was the most potent bioreductant which synthesized AgNPs with average diameter (D90%) of 18.3 nm. The particles exhibited considerable antimicrobial activities against all six microorganisms. AgNPs synthesized by S. caseolaris using 5 ppm AgNO3 showed the most significant activity with maximum zone of inhibition (13.5 ± 0.8 mm) against E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramteke, C., Chakraborty, T., Sarangi, B. K., Pandey, R. A. (2013). Journal Chemical. doi:10.1155/2013/278925.

    Google Scholar 

  2. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Ali, M. S., Vijayakumar, V., et al. (2012). Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience, 2, 143–147.

    Article  Google Scholar 

  3. Vigneshwaran, N. (2006). A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 341, 2012–2018.

    Article  Google Scholar 

  4. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Article  Google Scholar 

  5. Mani, U., Dhanasingh, S., Arunachalam, R., Paul, E., Shanmugam, P., Rose, C., et al. (2013). A simple and green method for the synthesis of silver nanoparticles using Ricinus communis leaf extract. Progress in Nanotechnology and Nanomaterials, 2, 21–25.

    Google Scholar 

  6. Govindaraju, K., Tamilselvan, S., Kiruthiga, V., Singaravelu, G. J. (2010). Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Biopesticides, 3, 394–399.

    Google Scholar 

  7. Roy, N., & Barik, A. (2000). Green synthesis of silver nanoparticles from the unexploited weed resources. International Journal of Nanotechnology and Applications, 4, 95–101.

    Google Scholar 

  8. Parashar, U. K., Saxenaa, P. S., Srivastava, A. (2009). Bioinspired synthesis of silver nanoparticles. Digest Journal of Nanomatter and Biostructures, 4, 159–166.

    Google Scholar 

  9. Annavaram, V., Posa, V. R., Uppara, V. G., Jorepalli, S., Somala, A. R. (2015). Facile green synthesis of silver nanoparticles using Limonia acidissima leaf extract and its antibacterial activity. Bionanoscience. doi:10.1007/s12668-015-0168-7.

    Google Scholar 

  10. Kulkarni, A. P., Srivastava, A. A., Harpale, P. M., Zunjarrao, R. S. (2011). Plant mediated synthesis of silver nanoparticles—tapping the unexploited sources. Journal of Natural Product and Plant Resources, 1, 100–107.

    Google Scholar 

  11. Shankar, S. S., Rai, A., Ahmad, A., Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 27, 496–502.

    Article  Google Scholar 

  12. Nabikhan, A., Kandasamy, K., Raj, A., Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum, L. Colloids and Surfaces B: Biointerfaces, 79, 488–493.

    Article  Google Scholar 

  13. Song, J. Y., Eun-Yeong, K., Kim, B. S. (2010). Biological synthesis of platinum nanoparticles using Diospyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33, 159–164.

    Article  Google Scholar 

  14. Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal Tropical Biomedicine, 2, 574–580.

    Article  Google Scholar 

  15. Sathishkumar, M., Sneha, K., Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101, 7958–7965.

    Article  Google Scholar 

  16. Kumar, T. S., Rahuman, A., Rajakumar, G., Marimuthu, S., Bagavan, A., Jayaseelan, C., et al. (2011). Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology Research, 108, 693–702.

    Article  Google Scholar 

  17. Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A. (2009). A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A, 339, 134–139.

    Article  Google Scholar 

  18. Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., Linhardt, R. J. (2011). Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5, 69–78.

    Article  Google Scholar 

  19. Metuku, R. P., Pabba, S., Burra, S., SVSSSL Hima Bindu, N., Gudikandula, K., Singara Charya, M. A. (2014) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. 3 Biotech, 4, 227–234.

  20. Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine, 5, 452–456.

    Article  Google Scholar 

  21. Pourali, P., Baserisalehi, M., Afsharnezhad, S., Behravan, J., Ganjali, R., Bahador, N., et al. (2013). The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals, 26, 189–196.

    Article  Google Scholar 

  22. Kathiresan, K., Manivannan, S., Nabeel, M. A., Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71, 133–137.

    Article  Google Scholar 

  23. Balaji, S. D., Basavaraja, S., Deshpande, R., Mahesh, B. D., Prabhakar, K. B., Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces, 68, 88–92.

    Article  Google Scholar 

  24. Subramanian, M., Alikunhi, N. M., Kathiresan, K. (2010). In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Advanced Science Letters, 3, 428–433.

    Article  Google Scholar 

  25. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 27, 313–318.

    Article  Google Scholar 

  26. Bandaranayake, W. M. (2002). Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management, 10, 421–452.

    Article  Google Scholar 

  27. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijayakumar, V., Selvam, S., et al. (2011). Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacific Journal Tropical Medicine, 4, 799–803.

    Article  Google Scholar 

  28. Singh, M., Kumar, M., Kalaivani, R., Manikandan, S., Kumaraguru, A. K. (2013). Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess and Biosystems Engineering, 36, 407–415.

    Article  Google Scholar 

  29. Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquatic Sciences, 68, 338–354.

    Article  Google Scholar 

  30. Bakshi, M., & Chaudhuri, P. (2014). Antimicrobial potential of leaf extracts of ten mangrove species from Indian Sundarban. International Journal Pharmaceutics Biology Science, 5, 294–304.

    Google Scholar 

  31. Ahmad, M. B., Shameli, K., Darroudi, M., Yunus, W. M. Z. W., Ibrahim, N. A., Hamid, A. A., et al. (2009). Antibacterial activity of silver/clay/chitosan bionanocomposites. Research Journal Biological Sciences, 4, 1156–1161.

    Google Scholar 

  32. Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3, 135–140.

    Article  Google Scholar 

  33. Chamakura, K., Perez-Ballestero, R., Luo, Z. P., Bashir, S., Liu, J. (2011). Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids and Surfaces B: Biointerfaces, 84, 88–96.

    Article  Google Scholar 

  34. Magana, S. M., Quintana, P., Aguilar, D. H., Toledo, J. A., Angeles-Chavez, C., Cortes, M. A., et al. (2008). Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical, 281, 192–199.

    Article  Google Scholar 

  35. Nithya, R., & Ragunathan, R. (2009). Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest Journal of Nanomater and Biostructures, 4, 623–629.

    Google Scholar 

  36. Lara, H. H., Nuñez, N. V. A., Turrent, L. I., Rodriguez-Padilla, C. (2010) Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 8, 1–10.

  37. Banerjee, L. K, Sastry, A. R. K, & Nayar, M. P. (1989) Mangroves in India: identification manual. Calcutta: Botanical Survey of India.

  38. Anil Kumar, S., Abyaneh, M. K., Gosavi Sulabha, S. W., Ahmad, A., Khan, M. I. (2007). Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29, 439–445.

    Article  Google Scholar 

  39. Kalimuthu, K., Babu, R. S., Venkataraman, D., Mohd, B., Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65, 150–153.

    Article  Google Scholar 

  40. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12, 788–800.

    Article  Google Scholar 

  41. Brause, R., Moeltgen, H., Kleinermanns, K. (2002). Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV–vis spectroscopy and STM/SEM microscopy. Applied Physics B, 75, 711–716.

    Article  Google Scholar 

  42. Zargar, M., Hamid, A. A., Bakar, F. A., Shamsudin, M. N., Shameli, K., Jahanshiri, F., et al. (2011). Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules, 16, 6667–6676.

    Article  Google Scholar 

  43. Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50–56.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission (UGC), India; Centre for Nanoscience and Nanotechnology (CRNN), University of Calcutta; and DBT-CU IPLS Programme, University of Calcutta, for financial and infrastructural support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punarbasu Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, M., Ghosh, S. & Chaudhuri, P. Green Synthesis, Characterization and Antimicrobial Potential of Sliver Nanoparticles Using Three Mangrove Plants from Indian Sundarban. BioNanoSci. 5, 162–170 (2015). https://doi.org/10.1007/s12668-015-0175-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-015-0175-8

Keywords

Navigation