Skip to main content
Log in

Magnetic Resonance Imaging for Monitoring of Magnetic Polyelectrolyte Capsule In Vivo Delivery

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Layer-by-layer (LbL) assembled polyelectrolyte capsules have been widely studied as promising delivery systems due to their well-controlled architectures. Although their potential applications in vitro have been widely investigated, at present, it is still a challenging task to track their real-time delivery in vivo, where and how they would be located following their administration. In this work, the noninvasive magnetic resonance imaging (MRI) technique was applied to monitor the delivery of polyelectrolyte capsules in vivo, incorporating magnetite nanoparticles as imaging components. First, MRI scan was performed over 6 h after sample administration at the magnetic field of 3.0 T; magnetic capsules, both poly(allylamine hydrochloride)/poly(styrenesulfonate sodium salt)-based and poly-l-arginine hydrochloride/dextran sulfate (Parg/DS)-based, were detected mostly in the liver region, where the transverse relaxation time (T2) was shortened and hypointense images were visualized, demonstrating a contrast-enhanced MRI effect between liver and adjacent tissue. A continuous MRI scan found that the contrast-enhanced MRI effect can last up to 30 h; in the mean time, the Parg/DS-based capsules with smaller diameter were found to have a pronounced clearance effect, which resulted in a weakened MRI effect in the liver. No obvious toxicity was found in animal studies, and all mice survived after MRI scans. Histology study provided evidences to support the MRI results, and also revealed the destination of these magnetic capsules over 30 h after administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., et al. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9, 101–113.

    Article  Google Scholar 

  2. Delcea, M., Möhwald, H., Skirtach, A. G. (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 63, 730–747.

    Article  Google Scholar 

  3. del Mercato, L., Rivera-Gil, P., Abbasi, A. Z., Ochs, M., Ganas, C., Zins, I., et al. (2010). LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale, 2, 458–467.

    Article  Google Scholar 

  4. Klitzing, R. (2006). Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 8, 5012–5033.

    Article  Google Scholar 

  5. Skirtach, A. G., Yashchenok, A. M., Möhwald, H. (2011). Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chemical Communication, 47, 12736–12746.

    Article  Google Scholar 

  6. Ariga, K., Lvov, Y. M., Kawakami, K., Ji, Q., Hill, J. P. (2011). Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 14, 762–771.

    Article  Google Scholar 

  7. De Koker, S., Hoogenboom, R., De Geest, B. G. (2012). Polymeric multilayer capsules for drug delivery. Chemical Society Reviews, 41, 2867–2884.

    Article  Google Scholar 

  8. De Koker, S., De Cock, L. J., Rivera-Gil, P., Parak, W. J., Auzély Velty, R., Vervaet, C., et al. (2011). Polymeric multilayer capsules delivering biotherapeutics. Advanced Drug Delivery Reviews, 63, 748–761.

    Article  Google Scholar 

  9. De Geest, B. G., De Koker, S., Sukhorukov, G. B., Kreft, O., Parak, W. J., Skirtach, A. G., et al. (2009). Polyelectrolyte microcapsules for biomedical applications. Soft Matter, 5, 82–291.

    Article  Google Scholar 

  10. Brown, M. A., & Semelka, R. C. (2011). MRI: basic principles and applications. Portland: Wiley.

    Google Scholar 

  11. Modo, M. M., & Bulte, J. W. (2007). Molecular and cellular MR imaging. Boca Raton: CRC.

    Book  Google Scholar 

  12. Sheparovych, R., Sahoo, Y., Motornov, M., Wang, S., Luo, H., Prasad, P. N., et al. (2006). Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. Chemistry of Materials, 18, 591–593.

    Article  Google Scholar 

  13. Semelka, R. C., & Helmberger, T. K. (2001). Contrast agents for MR imaging of the liver. Radiology, 218, 27–38.

    Article  Google Scholar 

  14. Moffat, B. A., Reddy, G. R., McConville, P., Hall, D. E., Chenevert, T. L., Kopelman, R. R., et al. (2003). A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Molecular Imaging, 2, 324–332.

    Article  Google Scholar 

  15. Na, H. B., Song, I. C., Hyeon, T. (2009). Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 21, 2133–2148.

    Article  Google Scholar 

  16. Andrews, N. C. (1999). Disorders of iron metabolism. New England Journal of Medicine, 341, 1986–1995.

    Article  Google Scholar 

  17. Hentze, M. W., Muckenthaler, M. U., Andrews, N. C. (2004). Balancing acts: molecular control of mammalian iron metabolism. Cell, 117, 285–297.

    Article  Google Scholar 

  18. Nune, S. K., Gunda, P., Thallapally, P. K., Lin, Y. Y., Forrest, M. L., Berkland, C. J. (2009). Nanoparticles for biomedical imaging. Expert Opinion on Drug Delivery, 6, 1175–1194.

    Article  Google Scholar 

  19. De Cock, L. J., De Koker, S., De Geest, B. G., Grooten, J., Vervaet, C., Remon, J. P., et al. (2010). Polymeric multilayer capsules in drug delivery. Angewandte Chemie International Edition, 49, 6954–6973.

    Article  Google Scholar 

  20. Sukhorukov, G. B., Volodkin, D. V., Günther, A. M., Petrov, A. I., Shenoy, D. B., Möhwald, H. (2004). Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. Journal of Materials Chemistry, 14, 2073–2081.

    Article  Google Scholar 

  21. Gorin, D. A., Portnov, S. A., Inozemtseva, O. A., Luklinska, Z., Yashchenok, A. M., Pavlov, A. M., et al. (2008). Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Physical Chemistry Chemical Physics, 10, 6899–6905.

    Article  Google Scholar 

  22. Köhler, K., & Sukhorukov, G. B. (2007). Heat treatment of polyelectrolyte multilayer capsules: a versatile method for encapsulation. Advanced Functional Materials, 17, 2053–2061.

    Article  Google Scholar 

  23. Pavlov, A.M. (2012). Multilayer microcapsules for delivery, control and triggered release of bioactive compounds. (Unpublished dissertation). Queen Mary University of London, London

  24. Berret, J. F., Schonbeck, N., Gazeau, F., El Kharrat, D., Sandre, O., Vacher, A., et al. (2006). Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. Journal of the American Chemical Society, 128, 1755–1761.

    Article  Google Scholar 

  25. Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., et al. (2005). Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angewandte Chemie, 117, 5213–5217.

    Article  Google Scholar 

  26. Déjugnat, C., & Sukhorukov, G. B. (2004). pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir, 20, 7265–7269.

    Article  Google Scholar 

  27. Städler, B., Price, A. D., Zelikin, A. N. (2011). A critical look at multilayered polymer capsules in biomedicine: drug carriers, artificial organelles, and cell mimics. Advanced Functional Materials, 21, 14–28.

    Article  Google Scholar 

  28. De Geest, B. G., Vandenbroucke, R. E., Guenther, A. M., Sukhorukov, G. B., Hennink, W. E., Sanders, N. N., et al. (2006). Intracellularly degradable polyelectrolyte microcapsules. Advanced Materials, 18, 1005–1009.

    Article  Google Scholar 

  29. De Koker, S., De Geest, B. G., Singh, S. K., De Rycke, R., Naessens, T., Van Kooyk, Y., et al. (2009). Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angewandte Chemie, 121, 8637–8641.

    Article  Google Scholar 

  30. Moghimi, S. M., Hunter, A. C., Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 53, 283–318.

    Google Scholar 

  31. Edwards, D. A., Hanes, J., Caponetti, G., Hrkach, J., Ben-Jebria, A., Eskew, M. L., et al. (1997). Large porous particles for pulmonary drug delivery. Science, 276, 1868–1872.

    Article  Google Scholar 

  32. Köhler, K., Shchukin, D. G., Möhwald, H., Sukhorukov, G. B. (2005). Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. The Journal of Physical Chemistry. B, 109, 18250–18259.

    Article  Google Scholar 

  33. Leporatti, S., Gao, C., Voigt, A., Donath, E., Möhwald, H. (2001). Shrinking of ultrathin polyelectrolyte multilayer capsules upon annealing: a confocal laser scanning microscopy and scanning force microscopy study. The European Physical Journal E, 5, 13–20.

    Article  Google Scholar 

  34. Zhang, R., Köhler, K., Kreft, O., Skirtach, A., Möhwald, H., Sukhorukov, G. B. (2010). Salt-induced fusion of microcapsules of polyelectrolytes. Soft Matter, 6, 4742–4747.

    Article  Google Scholar 

  35. Ai, H. (2011). Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Advanced Drug Delivery Reviews, 63, 772–788.

    Article  Google Scholar 

  36. Wang, Y. X., Hussain, S. M., Krestin, G. P. (2001). Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European Radiology, 11, 2319–2331.

    Article  Google Scholar 

  37. Corot, C., Robert, P., Idée, J.-M., Port, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced Drug Delivery Reviews, 58, 1471–1504.

    Article  Google Scholar 

  38. Lu, J., Ma, S., Sun, J., Xia, C., Liu, C., Wang, Z., et al. (2009). Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials, 30, 2919–2928.

    Article  Google Scholar 

  39. Mikhaylov, G., Mikac, U., Magaeva, A. A., Itin, V. I., Naiden, E. P., Psakhye, I., et al. (2011). Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 6, 594–602.

    Article  Google Scholar 

  40. Liu, G., Wang, Z., Lu, J., Xia, C., Gao, F., Gong, Q., et al. (2011). Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials, 32, 528–537.

    Article  Google Scholar 

  41. Xie, J., Liu, G., Eden, H. S., Ai, H., Chen, X. (2011). Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 44, 883–892.

    Article  Google Scholar 

  42. Knoblaugh, S., Randolph-Habeckers, J., Rath, S. (2012). Necropsy and histology. In P. Treuting & S. M. Dintzis (Eds.), Comparative anatomy and histology: a mouse and human atlas (1st ed., p. 23). Oxford: Elsevier.

    Google Scholar 

  43. Torchilin, V. P. (2006). Multifunctional nanocarriers. Advanced Drug Delivery Reviews, 58, 1532–1555.

    Article  Google Scholar 

  44. Ai, H., Pink, J. J., Shuai, X., Boothman, D. A., Gao, J. (2005). Interactions between self-assembled polyelectrolyte shells and tumor cells. Journal of Biomedical Materials Research, Part A, 73, 303–312.

    Article  Google Scholar 

  45. Brigger, I., Dubernet, C., Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54, 631–651.

    Article  Google Scholar 

  46. Heuberger, R., Sukhorukov, G. B., Vörös, J., Textor, M., Möhwald, H. (2005). Biofunctional polyelectrolyte multilayers and microcapsules: control of non-specific and bio-specific protein adsorption. Advanced Functional Materials, 15, 357–366.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Radiology Department of West China Hospital (Sichuan University, China) for the support on the MRI measurement. The authors also acknowledge the National Natural Science Foundation of China (NSFC 51173117) and National Key Basic Research Program of China (2013CB933903) for the financial support. This research was supported by an EPSRC “Global Engagement” grant to establish research links between Queen Mary University of London, and Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Ai or Gleb B. Sukhorukov.

Additional information

The authors Q. Yi and D. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Q., Li, D., Lin, B. et al. Magnetic Resonance Imaging for Monitoring of Magnetic Polyelectrolyte Capsule In Vivo Delivery. BioNanoSci. 4, 59–70 (2014). https://doi.org/10.1007/s12668-013-0117-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0117-2

Keywords

Navigation