Skip to main content

Advertisement

Log in

Nanocarriers as Promising Drug Vehicles for the Management of Tuberculosis

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanoscience is emerging as a new era of technology advancement which has promoted our ability to understand scientific developments at nanoscale. The nanoparticle-based drug delivery systems have been implicated in the treatment of a variety of diseases especially the ones caused by intracellular pathogens. Therapeutic failures and antibiotic resistance developed by the notorious pathogenic bacteria like Mycobacterium tuberculosis have prompted researchers to develop novel ways to counter drug resistance, to shorten the treatment duration, and more importantly to reduce drug interactions with antiretroviral therapies. The pharmaceutical technologists of today are focusing more on improving the effectiveness of the drug by specifically targeting the sources and reservoirs of infections. The nanotechnology has the potential to develop more effective and compliant medicines. Current review discusses about various challenges faced in the development of effective nano-based tuberculosis therapies and overviews various state-of-art technologies being developed in-terms of nano-based drug delivery systems for encapsulation and sustained release of antituberculosis drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bawa, R., Bawa, S. R., Maebius, S. B., Flynn, T., Wei, C. (2005). Protecting new ideas and inventions in nanomedicines with patents. Nanomedicine: Nanotechnology, Biology and Medicine, 1, 150–158.

    Article  Google Scholar 

  2. Butler, J. C., Hofman, J., Cetron, M. S., Elliot, J. A., Arancibia, F., et al. (1996). The continued emergence of drug-resistant Streptococcus pneumoniae in the United States: an update from the centres for disease control and prevention’s Pneumococcal Sentinal Surveillance System. Journal of Infectious Diseases, 174, 986–993.

    Article  Google Scholar 

  3. Kunin, C. M. (1993). Resistance to antimicrobial drugs—a world-wide calamity. Annals of International Medicine, 118, 557–561.

    Article  Google Scholar 

  4. Petrini, B., & Hoffner, S. (1999). Drug resistant and multidrug resistant tubercle bacilli. International Journal of Antimicrobial Agents, 13, 93–97.

    Article  Google Scholar 

  5. Dye, C., Sheele, S., Dolin, P., Pathania, V., Raviglione, M. C. (1999). Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. Journal of the American Medical Association, 282, 677–686.

    Article  Google Scholar 

  6. Wright, A. (2006). Emergence of Mycobacteria tuberculosis with extensive resistance to second line drugs worldwide. Journal of the American Medical Association, 295, 2349–2351.

    Article  Google Scholar 

  7. Gonda, I., Schuster, J. A., Rubsamen, R. M., Lloyd, P., Cipolla, D., et al. (1998). Inhalation delivery systems with compliance and disease management capabilities. Journal of Controlled Release, 53, 269–274.

    Article  Google Scholar 

  8. Swai, H., Semete, B., Kalombo, L., Chellule, P., Kisich, K., Sievers, B. (2009). Nanomedicine for respiratory diseases. Wires nanomed nanobiotechnol, 1, 255–263.

    Article  Google Scholar 

  9. Prabakaran, D., Singh, P., Jaganathan, K. S., Vyas, S. P. (2004). Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs. Journal of Controlled Release, 95(2), 239–248.

    Article  Google Scholar 

  10. Constantinides, P. P., Chaubal, M. V., Shorr, R. (2008). Advances in lipid nano-dispersions for parenteral drug delivery and targeting. Advanced Drug Delivery Reviews, 60, 757–767.

    Article  Google Scholar 

  11. Seki, J., et al. (2004). A nanometer lipid emulsion, lipid nano-sphere (LNS) as a parenteral drug carrier for drug targeting. International Journal of Pharmacology, 273(1–2), 75–83.

    Google Scholar 

  12. Singh, S. K., et al. (2008). Phosphoethanolamine-complexed C-reactive protein: a pharmacological-like macromolecule that binds to native low-density lipoprotein in human serum. Clinical Chim Acta, 394(1–2), 94–98.

    Article  Google Scholar 

  13. Ahmed, M., Ramadan, W., Rambhu, D., Shakeel, F. (2008). Potential of nano-emulsions for intravenous delivery. Pharmazie, 63, 806–811.

    Google Scholar 

  14. Gelperina, S., Kisich, K., Iseman, M. D., Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 172, 1487–1490.

    Article  Google Scholar 

  15. Sosnik, A., Carcaboso, A. M., Glisoni, R. J., Moretton, M. A., Chiappetta, D. A. (2010). New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Advanced Drug Delivery Reviews, 62, 547–559.

    Article  Google Scholar 

  16. Rabinow, B. E. (2004). Nanosuspensions in drug delivery. Nature Reviews. Drug Discovery, 3, 785–796.

    Article  Google Scholar 

  17. Williart, J. F., & Descamps, M. (2008). Solid state amorphization of pharmaceuticals. Molecular Pharmacology, 5, 905–920.

    Article  Google Scholar 

  18. Kesisoglou, F., Panmai, S., Wu, Y. (2007). Nano-sizing oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews, 59, 631–644.

    Article  Google Scholar 

  19. Peters, K., et al. (2000). Preparation of a clofazimine nano-suspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. Journal of Antimicrobial Chemotherapy, 45, 77–83.

    Article  Google Scholar 

  20. Reverchon, E., DeMarco, I., DellaPorta, G. (2002). Rifampicin microparticle production by supercritical antisolvent precipitation. International Journal of Pharmacology, 243, 83–91.

    Article  Google Scholar 

  21. Reverchon, E., & DellaPorta, G. (2003). Micronization of antibiotics by supercritical assisted atomization. Journal of Supercritical Fluids, 26, 243–252.

    Article  Google Scholar 

  22. Sahin, N. O. (2007). Niosomes as nanocarrier systems. In M. R. Moza (Ed.), Nanomaterials and nanosystems for biomedical applications (pp. 67–81). the Netherlands: Springer.

    Chapter  Google Scholar 

  23. Jain, C. P., & Vyas, S. P. (1995). Preparation and characterization of niosomes containing rifampicin for lung targeting. Journal of Microencapsulation, 12, 401–407.

    Article  Google Scholar 

  24. Jain, C. P., Vyas, S. P., Dixit, V. K. (2006). Niosomal system for delivery of rifampicin to lymphatics. Indian Journal of Pharmacology, 68, 575–578.

    Article  Google Scholar 

  25. Mullaicharam, A. R., & Murthy, R. S. R. (2004). Lung accumulation of niosome entrapped rifampicin following intravenous and intratracheal administration in the rat. Journal of Drug Delivery Science and Technology, 14, 99–104.

    Google Scholar 

  26. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70, 1–20.

    Article  Google Scholar 

  27. Sharma, A. K., & Khuller, G. K. (2001). DNA vaccines—future strategies and relevance against intracellular pathogens. Immunology & Cell Biology, 79(6), 537–546.

    Article  Google Scholar 

  28. Delie, F., & Blanco-Prieto, M. J. (2005). Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules, 10, 65–80.

    Article  Google Scholar 

  29. Sharma, A. K., Verma, I., Tewari, R., Khuller, G. K. (1999). Adjuvant modulation of T-cell reactivity to 30 kDa secretory protein of Mycobacterium tuberculosis H37Rv and its protective efficacy against experimental tuberculosis. Journal of Medical Microbiology, 48, 757–763.

    Article  Google Scholar 

  30. Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G. K., Prasad, B. (2003). Poly(DL-lactide-co-glycolide nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. Journal of Antimicrobial Chemotherapy, 52, 981–986.

    Article  Google Scholar 

  31. Semete B., et al. (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 662–671.

    Google Scholar 

  32. Croy, S. R., & Kwon, G. S. (2006). Polymeric micelles for drug-delivery. Current Pharmaceutical Design, 12, 4669–4684.

    Article  Google Scholar 

  33. Gao, P., Nie, X., Zou, M., Shi, Y., Cheng, G. (2011). Recent advances in materials for extended-release antibiotic delivery system. Journal of Antibiotics (Tokyo). doi:10.1038/ja.2011.58.

    Google Scholar 

  34. Kisich, K. O., et al. (2007). Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. International Journal of Pharmacology, 345, 154–162.

    Article  Google Scholar 

  35. Shipulo, E., et al. (2008). Development of nanosomal formulation of moxifloxacin based on poly(butyl-2-cyanoacrylate). Pharmaceutical Chemistry Journal, 42, 145–149.

    Article  Google Scholar 

  36. Dutt, M., & Khuller, G. K. (2001). Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in poly (DL-lactide-co-glycolide) microparticles. Journal of Antimicrobial Chemotherapy, 47(6), 829–835.

    Article  Google Scholar 

  37. Ain, Q., Sharma, S., Garg, S. K., Khuller, G. K. (2002). Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s). International Journal of Pharmacology, 239(1–2), 37–46.

    Google Scholar 

  38. Gangadharam, P. R., Geeta, N., Hsu, Y. Y., Wise, D. L. (1999). Chemotherapy of tuberculosis in mice using single implants of isoniazid and pyrazinamide. International Journal of Tuberculosis and Lung Disease, 3(6), 515–520.

    Google Scholar 

  39. Kailasam, S., Daneluzzi, D., Gangadharam, P. R. (1994). Maintenance of therapeutically active levels of isoniazid for prolonged periods in rabbits after a single implant of biodegradable polymer. Tubercle and Lung Disease, 75(5), 361–365.

    Article  Google Scholar 

  40. Vyas, S. P., Kannan, M. E., Jain, S., Mishra, V., Singh, P. (2004). Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. International Journal of Pharmacology, 269(1), 37–49.

    Article  Google Scholar 

  41. Wissing, S. A., Kayser, O., Muller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.

    Article  Google Scholar 

  42. Pandey, R., & Khuller, G. K. (2005). Antitubercular inhaled therapy: opportunities, progress and challenges. Journal of Antimicrobial Agents and Chemotherapy, 55, 430–435.

    Article  Google Scholar 

  43. Yan, W., Li, M., Gao, H. (2009). Polymeric micelle composed of PLA and chitosan as a drug carrier. Journal of Polymer Research, 16, 11–18.

    Article  Google Scholar 

  44. Silva, M., et al. (2001). Potential tuberculostatic: micelle-forming copolymer poly(ethylene glycol) poly(aspartic acid) prodrug with isoniazid. Arch Pharma Med Chem, 334, 189–193.

    Article  Google Scholar 

  45. Silva, M., et al. (2006). Potential tubercular anti TB agent: micelle forming pyrazinamide prodrug. Arch Pharma Chem, 339, 283–290.

    Article  Google Scholar 

  46. Silva, M., et al. (2007). Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Tropical Journal of Pharmaceutical Research, 6, 815–824.

    Article  Google Scholar 

  47. Kumar, P. V., Asthana, A., Dutta, T., Jain, N. K. (2006). Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. Journal of Drug Targeting, 14(8), 546–556.

    Article  Google Scholar 

  48. Kumar, P. V., Agashe, H., Dutta, T., Jain, N. K. (2007). PEGylated dendritic architecture for the development of a prolonged drug delivery system for an antitubercular drug. Current Drug Delivery, 4(1), 11–19.

    Article  Google Scholar 

  49. Rao, B. P., Suresh, S., Narendra, C., Balasangameshwer. (2006). Physicochemical characterization of a-cyclodextrin and hydroxyethyl a-cyclodextrin complexes of rifampicin. Ars Pharmaceutica, 47, 37–59.

    Google Scholar 

  50. Klemens, S. P., Cynamon, M. H., Swenson, C. E., Ginsberg, R. S. (1990). Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrobial Agents and Chemotherapy, 34(6), 967–970.

    Article  Google Scholar 

  51. Oh, Y. K., Nix, D. E., Straubinger, R. M. (1995). Formulation and efficacy of liposome encapsulated antibiotics for the therapy of intracellular Mycobacterium avium infection. Antimicrobial Agents and Chemotherapy, 39, 2104–2111.

    Article  Google Scholar 

  52. Leitzke, S., et al. (1998). Rationale for and efficacy of prolonged interval treatment using liposome encapsulated amikacin in experimental Mycobacterium avium infection. Antimicrobial Agents and Chemotherapy, 42, 459–461.

    Google Scholar 

  53. Deol, P., Khuller, G. K., Joshi, K. (1997). Therapeutic efficacy of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrobial Agents and Chemotherapy, 41, 1211.

    Google Scholar 

  54. Tomalia, D. A. (2005). Birth of new molecular architecture: dendrimers as quantized building blocks for nano-scale synthetic polymer chemistry. Progress in Polymer Science, 30, 294–324.

    Article  Google Scholar 

  55. Evrard, B., et al. (2004). Cyclodextrins as a potential carrier in drug nebulization. Journal of Controlled Release, 96, 403–410.

    Article  Google Scholar 

  56. Antoni, P., et al. (2009). Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Int. Ed. Engl., 48(12), 2126–2130.

    Article  Google Scholar 

  57. McElhanon, J. R., & McGrath, D. V. (2000). Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. Journal of Organic Chemistry, 65(11), 3525–3529.

    Article  Google Scholar 

  58. Liang, C. O., & Fréchet, J. M. J. (2005). Incorporation of functional guest molecules into an internally functionalizable dendrimer through olefin metathesis. Macromolecules, 38(15), 6276–6284.

    Article  Google Scholar 

  59. Hecht, S., & Fréchet, J. M. J. (2001). Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angewandte Chemie International Edition, 40(1), 74–91.

    Article  Google Scholar 

  60. Frechet, J. M. J. (1994). Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 263(5154), 1710–1715.

    Article  Google Scholar 

  61. Kumar, T. R., Dutta, T., Gajbhiye, V., Jain, N. K. (2009). Exploring dendrimer towards dual drug delivery. Journal of Microencapsulation (Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University), 26(4), 287–296.

    Google Scholar 

  62. Dutta, T., & Jain, N. K. (2007). Targeting potential and anti HIV activity of mannosylated fifth generation poly (propyleneimine) dendrimers. Biochimica et Biophysica Acta, 1770, 681–686.

    Article  Google Scholar 

  63. Dutta, T., et al. (2007). Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. Journal of Drug Targeting, 15(1), 84–96.

    Article  Google Scholar 

  64. Dutta, T., Garg, T., Jain, N. K. (2008). Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. European Journal of Pharmaceutical Sciences, 34(2–3), 181–189.

    Article  Google Scholar 

  65. Fischer, M., & Vogtle, F. (1999). Dendrimers: from design to application—a progress report. Angewandte Chemie International Edition, 38(7), 884–905.

    Article  Google Scholar 

  66. Fu, H. L., Cheng, S. X., Zhang, X. Z. (2007). Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(DL-lactide) for localized gene delivery. Journal of Control Release (Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University), 124(3), 181–188.

    Google Scholar 

  67. Fu, H. L., Cheng, S. X., Zhang, Z. X., Zhuo, R. X. (2008). Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. The Journal of Gene Medicine (Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China), 10(12), 1334–1342.

    Google Scholar 

  68. Sham, J. O., Zhang, Y., Finlay, W. H., Roa, W. H., Lobenberg, R. (2004). Formulation and characterization of spray dried powders containing nano-particles for aerosol delivery to the lung. International Journal of Pharmacology, 269, 457–467.

    Article  Google Scholar 

  69. Sharma, A., Sharma, S., Khuller, G. K. (2004). Lectin functionalized poly(lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. Journal of Antimicrobial Agents and Chemotherapy, 54, 761–766.

    Article  Google Scholar 

  70. Pandey, R., & Khuller, G. K. (2004). Subcutaneous nano-particle based antitubercular chemotherapy in an experimental model. Journal of Antimicrobial Agents and Chemotherapy, 54, 266–268.

    Article  Google Scholar 

  71. Mathuria, J. P. (2009). Nanoparticles in tuberculosis diagnosis, treatment and prevention: a hope for future. Digest Journal of Nanomaterials and Biostructures, 4(2), 309–312.

    Google Scholar 

  72. Xenariou, S., Griesenbach, U., Ferrari, S., Dean, P., Schule, R. K., Cheng, S. H., et al. (2006). Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Therapy, 13, 1545–1552.

    Article  Google Scholar 

  73. Ziardy, A. G., et al. (2003). Transfection of airway epithelium by stable PEGylated poly L-lysine DNA nano-particles in vivo. Molecular Therapy, 8, 936–947.

    Article  Google Scholar 

  74. Konstan, M. W., et al. (2004). Compacted DNA nano-particles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Human Gene Therapy, 15, 1255–1269.

    Article  Google Scholar 

  75. Gwinn, M. R., & Vallyathan, V. (2006). Nanoparticles: health effects—pros and cons. Environmental Health Perspectives, 114(12), 1818–1825.

    Google Scholar 

  76. Oberdorster, G., Oberdorster, E., Oberdorster, J. (2005). Nano-toxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspective, 113, 823–839.

    Article  Google Scholar 

  77. Pandey, R. (2005). Antitubercular inhaled therapy: opportunities, progress and challenges. Journal of Antimicrobial Chemotherapy, 55, 430.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.K., Kumar, R., Nishal, B. et al. Nanocarriers as Promising Drug Vehicles for the Management of Tuberculosis. BioNanoSci. 3, 102–111 (2013). https://doi.org/10.1007/s12668-013-0084-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0084-7

Keywords

Navigation