Skip to main content

Advertisement

Log in

Simulated Biological Cells for Receptor Counting in Fluorescence Imaging

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Digital image processing and epifluorescence microscopy provide one of the main and basic tools for living biological cell analysis and studying. Developing, testing, and comparing those image processing methods properly is eased by the use of a controlled environment. Taking advantage of an existing database of verified and trustworthy images and meta-data helps controlling the validity of the processing results. Manually generating that golden database is a long process involving specialists being able to apprehend and extract useful data out of fluorescent images. Having enough cases in the database to challenge the processing methods and gain trust in them can only be achieved manually through time-consuming, prone to human-error processes. More and more we need to automate this process. This paper presents a framework implementing a novel approach to generate synthetic fluorescent images of fluorescently stained cell populations by simulating the imaging process of fluorescent molecules. Ultimately, the proposed simulator allows us to generate images and golden data to populate the database, thus providing tools for the development, evaluation, and testing of processing algorithms meant to be used in automated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mascetti, G., Vergani, L., Diaspro, A., Carrara, S., Radicchi, G., Nicolini, C. (1996). Effect of fixatives on calf thymocytes chromatin as analyzed by 3D high-resolution fluorescence microscopy. Cytometry, 23(2), 110–119.

    Article  Google Scholar 

  2. Anderson, C. M., Georgiou, G. N., Morrison, I. E., Stevenson, G. V., Cherry, R. J. (1992). Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. Journal of Cell Science, 101(2), 415–425.

    Google Scholar 

  3. Mascetti, G., Carrara, S., Vergani, L. (2001). Relationship between chromatin compactness and dye uptake for in situ chromatin stained with DAPI. Cytometry, 44(2), 113–119.

    Article  Google Scholar 

  4. Nicolini, C., Carrara, S., Mascetti, G. (1997). High order DNA structure as inferred by optical fluorimetry and scanning calorimetry. Molecular Biology Reports, 24(4), 235–246.

    Article  Google Scholar 

  5. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O. (2007). Computational framework for simulating fluorescence microscope images with cell populations. IEEE Transactions on Medical Imaging, 26(7), 1010–1016.

    Article  Google Scholar 

  6. Lehmussola, A., Selinummi, J., Ruusuvuori, P., Niemisto, A., Yli-Harja, O. (2005). Simulating fluorescent microscope images of cell populations. In 27th annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS 2005 (pp. 3153–3156).

  7. Svoboda, D., Kašík, M., Maška, M., Hubenỳ, J., Stejskal, S., Zimmermann, M. (2007). On simulating 3D fluorescent microscope images. In Computer analysis of images and patterns (pp. 309–316).

  8. Perlin, K. (1985). An image synthesizer. ACM SIGGRAPH Computer Graphics, 19(3), 287–296.

    Article  Google Scholar 

  9. Yaqoob, P. (2009). The nutritional significance of lipid rafts. Annual Review of Nutrition, 29, 257–282.

    Article  Google Scholar 

  10. Haeberlé, O. (2003). Focusing of light through a stratified medium: A practical approach for computing microscope point spread functions. Part I: Conventional microscopy. Optics Communications, 216(1–3), 55–63.

    Article  Google Scholar 

  11. Jamur, M. C., & Oliver, C. (2010). Permeabilization of cell membranes. Methods in Molecular Biology, 588, 63–66.

    Article  Google Scholar 

  12. Klein, A., van den Doel, R., Young, I. T., Ellenberger, S., van Vliet, L. (1998). Quantitative evaluation and comparison of light microscopes. In Proc. SPIE, progress in biomedical optics, optical investigation of cells in vitro and in vivo (Vol. 3260, pp. 162–173).

  13. Frisken-Gibson, S., & Lanni, F. (1991). Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. Journal of the Optical Society of America A, 8(10), 1601–1613.

    Article  Google Scholar 

  14. Mullikin, J. C., van Vliet, L. J., Netten, H., Boddeke, F. R., Van der Feltz, G., Young, I. T. (1994). Methods for CCD camera characterization. In Proceedings of the SPIE image acquisition and scientific imaging systems (Vol. 2173, pp 73–84).

  15. Zhang, B., Zerubia, J., Olivo-Marin, J. C. (2007). Gaussian approximations of fluorescence microscope point-spread function models. Applied Optics, 46(10), 1819–1829.

    Article  Google Scholar 

  16. Bigas, M., Cabruja, E., Forest, J., Salvi, J. (2006). Review of CMOS image sensors. Microelectronics Journal, 37(5), 433–451.

    Article  Google Scholar 

  17. Mutch, S. A., Fujimoto, B. S., Kuyper, C. L., Kuo, J. S., Bajjalieh, S. M., Chiu, D. T. (2007) Deconvolving single-molecule intensity distributions for quantitative microscopy measurements. Biophysical Journal, 92(8) 2926–2943.

    Article  Google Scholar 

  18. Mutch, S. A., Kensel-Hammes, P., Gadd, J. C., Fujimoto, B. S., Allen, R. W., Schiro, P. G., et al. (2011). Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. The Journal of Neuroscience, 31(41), 1461–1470.

    Article  Google Scholar 

  19. Cronin, B., de Wet, B., Wallace, N. I. (2009). Lucky imaging: Improved localization accuracy for single molecule imaging. Biophysical Journal, 96, 2912–2917.

    Article  Google Scholar 

  20. Huang, B., Bates, M., Zhuang, Z. (2009). Super-resolution fluorescence microscopy. Annual Review of Biochemistry, 78, 993–1016.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Paolo Scilacci and Linda Corbino-Giunta for the Caco-2 cell samples preparation. (Fig. 1). This work is supported by the Nutri-CHIP project, which is financed with a grant form the Swiss Nano-Tera.ch initiative and evaluated by the Swiss National Science Foundation. The research was also partially supported by the NanoSys project, within the program ERC-2009-AdG-246810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Ghaye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaye, J., De Micheli, G. & Carrara, S. Simulated Biological Cells for Receptor Counting in Fluorescence Imaging. BioNanoSci. 2, 94–103 (2012). https://doi.org/10.1007/s12668-012-0041-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0041-x

Keywords

Navigation