Skip to main content
Log in

Gold Nanoparticles for Plasmonic Biosensing: The Role of Metal Crystallinity and Nanoscale Roughness

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Noble metal nanoparticles show specific optical properties due to the excitation of localized surface plasmons that make them attractive candidates for highly sensitive bionanosensors. The underlying physical principle is either an analyte-induced modification of the dielectric properties of the medium surrounding the nanoparticle or an increase of the excitation and emission rates of an optically active analyte by the resonantly enhanced plasmon field. Either way, besides the nanoparticle geometry the dielectric properties of the metal and nanoscale surface roughness play an important role for the sensing performance. As the underlying principles are however not yet well understood, we aim here at an improved understanding by analyzing the optical characteristics of lithographically fabricated nanoparticles with different crystallinity and roughness parameters. We vary these parameters by thermal annealing and apply a thin gold film as a model system to retrieve modifications in the dielectric function. We investigate, on one hand, extinction spectra that reflect the far-field properties of the plasmonic excitation and, on the other hand, surface-enhanced Raman spectra that serve as a near-field probe. Our results provide improved insight into localized surface plasmons and their application in bionanosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The refractive index of 1.27 was chosen as a weighted mean of quartz (n = 1.46 at 700 nm, 60%) and air (n = 1, 40%) assuming a slightly stronger impact of the higher refractive medium. The spectral shift induced by using the dielectric functions of the annealed compared to the non-annealed gold films is largely independent of this choice.

References

  1. Maier, S. A. (2007). Plasmonics—fundamentals and applications. New York: Springer.

    Google Scholar 

  2. Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7, 442–453. doi:10.1038/nmat2162ER.

    Article  Google Scholar 

  3. Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 58, 267–297. doi:10.1146/annurev.physchem.58.032806.104607.

    Article  Google Scholar 

  4. Yonzon, C. R., Stuart, D. A., Zhang, X. Y., McFarland, A. D., Haynes, C. L., Van Duyne, R. P. (2005). Towards advanced chemical and biological nanosensors—an overview. Talanta, 67, 438–448. doi:10.1016/j.talanta.2005.06.039ER.

    Article  Google Scholar 

  5. Dahlin, A. B., Tegenfeldt, J. O., Hook, F. (2006). Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Analytical Chemistry, 78, 4416–4423. doi:10.1021/ac0601967ER.

    Article  Google Scholar 

  6. Lin, T., & Chung, M. (2009). Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosensors and Bioelectronics, 24, 1213–1218. doi:10.1016/j.bios.2008.07.013.

    Article  Google Scholar 

  7. Haes, A. J., Chang, L., Klein, W. L., Van Duyne, R. P. (2005). Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 127, 2264–2271. doi:10.1021/ja044087q.

    Article  Google Scholar 

  8. Shen, X. W., Huang, C. Z., Li, Y. F. (2007). Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid. Talanta, 72, 1432–1437. doi:10.1016/j.talanta.2007.01.066ER.

    Article  Google Scholar 

  9. Endo, T., Kerman, K., Nagatani, N., Takamura, Y., Tamiya, E. (2005). Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Analytical Chemistry, 77, 6976–6984. doi:10.1021/ac0513459ER.

    Article  Google Scholar 

  10. Guo, L. H., Chen, G. N., Kim, D. H. (2010). Three-dimensionally assembled gold nanostructures for plasmonic biosensors. Analytical Chemistry, 82, 5147–5153. doi:10.1021/ac100346zER.

    Article  Google Scholar 

  11. Endo, T., Takizawa, H., Yanagida, Y., Hatsuzawa, T., Tamiya, E. (2008). Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen-antibody and enzymatic reactions on the single biosensor. Sensors and Materials, 20, 255–265.

    Google Scholar 

  12. Endo, T., Kerman, K., Nagatani, N., Hiepa, H. M., Kim, D. K., Yonezawa, Y., et al. (2006). Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Analytical Chemistry, 78, 6465–6475. doi:10.1021/ac0608321ER.

    Article  Google Scholar 

  13. Schultz, S., Smith, D. R., Mock, J. J., Schultz, D. A. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences of the United States of America, 97, 996–1001.

    Article  Google Scholar 

  14. Etchegoin, P. G., & Le Ru, E. C. (2008). A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 10, 6079–6089. doi:10.1039/b809196j.

    Article  Google Scholar 

  15. Lakowicz, J. R., Geddes, C. D., Gryczynski, I., Malicka, J., Gryczynski, Z., Aslan, K., et al. (2004). Advances in surface-enhanced fluorescence. Journal of Fluorescence, 14, 425–441.

    Article  Google Scholar 

  16. Moskovits, M. (1985). Surface-enhanced spectroscopy. Reviews of Modern Physics, 57, 783–826.

    Article  Google Scholar 

  17. Campion, A., & Kambhampati, P. (1998). Surface-enhanced Raman scattering. Chemical Society Reviews, 27, 241–250. doi:10.1039/a827241z.

    Article  Google Scholar 

  18. Jensen, T. R., Schatz, G. C., Van Duyne, R. P. (1999). Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. The Journal of Physical Chemistry B, 103, 2394–2401. doi:10.1021/jp984406y.

    Article  Google Scholar 

  19. Gunnarsson, L., Rindzevicius, T., Prikulis, J., Kasemo, B., Kall, M., Zou, S. L., et al. (2005). Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. The Journal of Physical Chemistry B, 109, 1079–1087. doi:10.1021/jp049084e.

    Article  Google Scholar 

  20. Nikoobakht, B., & El-Sayed, M. A. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 15, 1957–1962. doi:10.1021/cm020732lER.

    Article  Google Scholar 

  21. Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., et al. (2005). Silver nanowires as surface plasmon resonators. Physical Review Letters. doi:10.1103/PhysRevLett.95.257403ER.

  22. Rost, M. J. (2007). In situ real-time observation of thin film deposition: roughening, zeno effect, grain boundary crossing barrier, and steering. Physical Review Letters. doi:10.1103/PhysRevLett.99.266101ER.

  23. Rost, M. J., Quist, D. A., Frenken, J. W. M. (2003). Grains, growth, and grooving. Physical Review Letters, 91, 026101. doi:10.1103/PhysRevLett.91.026101ER.

    Article  Google Scholar 

  24. Aspnes, D. E., Kinsbron, E., Bacon, D. D. (1980). Optical-properties of Au—sample effects. Physical Review B, 21, 3290–3299.

    Article  Google Scholar 

  25. Stranahan, S. M., & Willets, K. A. (2010). Super-resolution optical imaging of single-molecule SERS hot spots. Nano Letters, 10, 3777–3784. doi:10.1021/nl102559d.

    Article  Google Scholar 

  26. Huang, W. Y., Qian, W., El-Sayed, M. A., Ding, Y., Wang, Z. L. (2007). Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles. Journal of Physical Chemistry C, 111, 10751–10757. doi:10.1021/jp0738917.

    Article  Google Scholar 

  27. Rodriguez-Fernandez, J., Funston, A. M., Perez-Juste, J., Alvarez-Puebla, R. A., Liz-Marzan, L. M., Mulvaney, P. (2009). The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Physical Chemistry Chemical Physics, 11, 5909–5914. doi:10.1039/b905200n.

    Article  Google Scholar 

  28. Pecharroman, C., Perez-Juste, J., Mata-Osoro, G., Liz-Marzan, L. M., Mulvaney, P. (2008). Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Physical Review B, 77, 035418. doi:10.1103/PhysRevB.77.035418.

    Article  Google Scholar 

  29. Trugler, A., Tinguely, J. C., Krenn, J. R., Hohenau, A., Hohenester, U. (2011). Influence of surface roughness on the optical properties of plasmonic nanoparticles. Physical Review B, 83, 081412(R). doi:10.1103/PhysRevB.83.081412.

    Article  Google Scholar 

  30. Ohring, M. (2002). Materials science of thin films. San Diego: Academic.

    Google Scholar 

  31. Thompson, C. V. (2000). Structure evolution during processing of polycrystalline films. Annual Review of Materials Science, 30, 159–190. doi:10.1146/annurev.matsci.30.1.159.

    Article  Google Scholar 

  32. Chen, K., Drachev, V. P., Borneman, J. D., Kildishev, A. V., Shalaev, V. M. (2010). Drude relaxation rate in grained gold nanoantennas. Nano Letters, 10, 916–922. doi:10.1021/nl9037246.

    Article  Google Scholar 

  33. Romanyuk, V. R., Kondratenko, O. S., Fursenko, O. V., Lytvyn, O. S., Zynyo, S. A., Korchovyi, A. A., et al. (2008). Thermally induced changes in thin gold films detected by polaritonic ellipsometry. Materials Science Engineering B, 149, 285–291. doi:10.1016/j.mseb.2007.10.019ER.

    Article  Google Scholar 

  34. Bohren, C., & Huffman, D. (1982). Absorption and scattering of light by small particles. New York: Wiley.

    Google Scholar 

  35. Kreibig, U., & Vollmer, M. (1995). Optical properties of metal clusters. New York: Springer.

    Google Scholar 

  36. Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. The Journal of Physical Chemistry B, 107, 668–677. doi:10.1021/jp026731y.

    Article  Google Scholar 

  37. Le Ru, E. C., Etchegoin, P. G., Grand, J., Félidj, N., Aubard, J., Lévi, G., et al. (2008). Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Current Applied Physics, 8, 467–470. doi:10.1016/j.cap.2007.10.073.

    Article  Google Scholar 

  38. Felidj, N., Aubard, J., Levi, G., Krenn, J. R., Hohenau, A., Schider, G., et al. (2003). Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 82, 3095–3097. doi:10.1063/1.1571979.

    Article  Google Scholar 

  39. Le Ru, E. C., Etchegoin, P. G., Grand, J., Felidj, N., Aubard, J., Levi, G. (2007). Mechanisms of spectral profile modification in surface-enhanced fluorescence. Journal of Physical Chemistry C, 111, 16076–16079. doi:10.1021/jp076003g.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Georg Jakopic of the Joanneum Research Institute in Weiz for the ellipsometry measurements. This work has been supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Förderung (FWF) under project no. 21235-N20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Tinguely.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

PDF 195 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinguely, JC., Sow, I., Leiner, C. et al. Gold Nanoparticles for Plasmonic Biosensing: The Role of Metal Crystallinity and Nanoscale Roughness. BioNanoSci. 1, 128–135 (2011). https://doi.org/10.1007/s12668-011-0015-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0015-4

Keywords

Navigation