Skip to main content
Log in

Utilization of device parameters to assess the performance of a monocrystalline solar module under varied temperature and irradiance

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this work, an assessment on the variation of intrinsic parameters of a monocrystalline silicon photovoltaic (PV) module is carried out under varied temperature and irradiance, aiming at establishing some mathematical functions that are well describing these changes. The accurate Brent’s algorithm-based method is utilized to determine the parameters of the PV module. Then, the derived equations that correlate each parameter with the environmental factors were used to simulate current–voltage (I–V) characteristics at specific temperature and irradiance. This simulation result was compared to the datasheet I–V to show the robustness of the determined parameters. It was concluded that the change in parameters of the PV module is in good agreement with that of the polycrystalline solar cells, especially at low temperature and high irradiance. The parameters-related formulas were found to be very useful in simulating the I–V response of PV panels at desired temperature and irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, Z.-S., Zhang, G.-Q., Li, D.-M., Zhou, J., Li, L.-J., Li, L.-X.: Application and development of solar energy in building industry and its prospects in China. Energy Policy 35, 4121–4127 (2007)

    Article  Google Scholar 

  2. McEvoy, A.J., Castaner, L., Markvart, T.: Solar cells: materials, manufacture and operation. Academic Press, New York (2012)

    Google Scholar 

  3. Muhammad, F.F., Yahya, M.Y., Sulaiman, K.: Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T: Mq3: PCBM (M= Ga, Al). Mater Chem Phys 188, 86–94 (2017)

    Article  Google Scholar 

  4. Otte, K., Makhova, L., Braun, A., Konovalov, I.: Flexible Cu (In, Ga) Se2 thin-film solar cells for space application. Thin Solid Films 511, 613–622 (2006)

    Article  Google Scholar 

  5. Muhammad, F.F., Sulaiman, K.: Thermal stability and reproducibility enhancement of organic solar cells by tris (hydroxyquinoline) gallium dopant forming a dual acceptor active layer. Arothe Sci J Koya Univ 6, 69–78 (2018)

    Google Scholar 

  6. Ahmad, Z., Touati, F., Muhammad, F.F., Najeeb, M.A., Shakoor, R.: Effect of ambient temperature on the efficiency of the PCPDTBT: PC71BM BHJ solar cells. Appl Phys A 123, 486 (2017)

    Article  Google Scholar 

  7. Meneses-Rodrı́guez D, Horley PP, Gonzalez-Hernandez J, Vorobiev YV, Gorley PN: Photovoltaic solar cells performance at elevated temperatures. Sol. Energy 78, 243–250 (2005)

    Article  Google Scholar 

  8. Muhammad, F.F., Ketuly, K.A., Yahya, M.Y.: Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor. J Inorg Organomet Polym Mater 28, 102–109 (2018)

    Article  Google Scholar 

  9. Ahmed DR, Mohammed IR, Abdullah HM, Muhammadsharif FF, Sulaiman K, Alsoufi MS, Bawazeer TM (2021) The correlation of device parameters with illumination energy to explore the performance of a monocrystalline silicon solar module. Silicon. https://doi.org/10.1007/s12633-021-00966-z

  10. Anani, N., Ibrahim, H.: Adjusting the single-diode model parameters of a photovoltaic module with irradiance and temperature. Energies 13, 3226 (2020)

    Article  Google Scholar 

  11. Muhammad FF, Yahya MY, Hameed SS, Aziz F, Sulaiman K, Rasheed MA, Ahmad Z (2017) Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions. PLoS ONE 12:e0182925

  12. Xiao, W., Nazario, G., Wu, H., Zhang, H., Cheng, F.: A neural network based computational model to predict the output power of different types of photovoltaic cells. PLoS ONE 12, e0184561 (2017)

    Article  Google Scholar 

  13. Sulyok, G., Summhammer, J.: Extraction of a photovoltaic cell’s double-diode model parameters from data sheet values. Energy Sci Eng 6, 424–436 (2018)

    Article  Google Scholar 

  14. Muhammad, F.F.: AW Karim Sangawi, S Hashim, S Ghoshal, IK Abdullah, SS Hameed, Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS ONE 14, e0216201 (2019)

    Article  Google Scholar 

  15. Muhammadsharif, F.F., Hashim, S., Hameed, S.S., Ghoshal, S., Abdullah, I.K., Macdonald, J., Yahya, M.Y.: Brent’s algorithm based new computational approach for accurate determination of single-diode model parameters to simulate solar cells and modules. Sol Energy 193, 782–798 (2019)

    Article  Google Scholar 

  16. Chegaar, M., Azzouzi, G., Mialhe, P.: Simple parameter extraction method for illuminated solar cells. Solid-State Electron. 50, 1234–1237 (2006)

    Article  Google Scholar 

  17. Dawidowski, W., Ściana, B., Zborowska-Lindert, I., Mikolášek, M., Bielak, K., Badura, M., Pucicki, D., Radziewicz, D., Kováč, J., Tłaczała, M.: The influence of top electrode of InGaAsN/GaAs solar cell on their electrical parameters extracted from illuminated I-V characteristics. Solid-State Electron 120, 13–18 (2016)

    Article  Google Scholar 

  18. M. Arabshahi, H. Torkaman, A. Keyhani, A method for hybrid extraction of single-diode model parameters of photovoltaics, Renewable Energy (2020).

  19. H.M. Ridha, A.A. Heidari, M. Wang, H. Chen, Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models, Energy Conversion and Management 209 (2020) 112660.

  20. Orioli, A.: An accurate one-diode model suited to represent the current-voltage characteristics of crystalline and thin-film photovoltaic modules. Renewable Energy 145, 725–743 (2020)

    Article  Google Scholar 

  21. Müller, B., Hardt, L., Armbruster, A., Kiefer, K., Reise, C.: Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Prog Photovolt Res Appl 24, 570–583 (2016)

    Article  Google Scholar 

  22. Tajuddin, M., Arif, M., Ayob, S., Salam, Z.: Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review. Int J Energy Res 39, 1153–1178 (2015)

    Article  Google Scholar 

  23. Verma, D., Nema, S., Shandilya, A., Dash, S.K.: Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems. Renew Sustain Energy Rev 54, 1018–1034 (2016)

    Article  Google Scholar 

  24. P.L.T. Duong, Q. Yang, H. Park, N. Raghavan, Reliability analysis and design of a single diode solar cell model using polynomial chaos and active subspace, Microelectronics Reliability 100 (2019) 113477.

  25. Hu, X., Zou, Y., Yang, Y.: Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy 111, 971–980 (2016)

    Article  Google Scholar 

  26. Neubauer, C., Samieipour, A., Oueslati, S., Danilson, M., Meissner, D.: Ageing of kesterite solar cells 1: Degradation processes and their influence on solar cell parameters. Thin Solid Films 669, 595–599 (2019)

    Article  Google Scholar 

  27. Domanski, K., Alharbi, E.A., Hagfeldt, A., Grätzel, M., Tress, W.: Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy 3, 61 (2018)

    Article  Google Scholar 

  28. W. Oh, S. Bae, S. Kim, N. Park, S.-I. Chan, H. Choi, H. Hwang, D. Kim, Analysis of degradation in 25-year-old field-aged crystalline silicon solar cells, Microelectronics Reliability 100 (2019) 113392.

  29. Gaglia, A.G., Lykoudis, S., Argiriou, A.A., Balaras, C.A., Dialynas, E.: Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens. Greece, Renew Energy 101, 236–243 (2017)

    Article  Google Scholar 

  30. M.N. Islam, M.Z. Rahman, S.M. Mominuzzaman, The effect of irradiation on different parameters of monocrystalline photovoltaic solar cell, 2014 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET), IEEE, 2014, pp. 1–6.

  31. Chander, S., Purohit, A., Sharma, A., Nehra, S., Dhaka, M.: A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature. Energy Rep 1, 104–109 (2015)

    Article  Google Scholar 

  32. Rahman, M., Hasanuzzaman, M., Rahim, N.: Effects of various parameters on PV-module power and efficiency. Energy Convers Manag 103, 348–358 (2015)

    Article  Google Scholar 

  33. Singh, P., Ravindra, N.M.: Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol Cells 101, 36–45 (2012)

    Article  Google Scholar 

  34. Tsuno, Y., Hishikawa, Y., Kurokawa, K.: Temperature and irradiance dependence of the IV curves of various kinds of solar cells. Tech Digest PVSEC 15, 422–423 (2005)

    Google Scholar 

  35. Xiao, C., Yu, X., Yang, D., Que, D.: Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. Sol Energy Mater Sol Cells 128, 427–434 (2014)

    Article  Google Scholar 

  36. Zaoui, F., Titaouine, A., Becherif, M., Emziane, M., Aboubou, A.: A combined experimental and simulation study on the effects of irradiance and temperature on photovoltaic modules. Energy Procedia 75, 373–380 (2015)

    Article  Google Scholar 

  37. Chaibi, Y., Allouhi, A., Malvoni, M., Salhi, M., Saadani, R.: Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models. Sol Energy 188, 1102–1110 (2019)

    Article  Google Scholar 

  38. Ibrahim, H., Anani, N.: Variations of PV module parameters with irradiance and temperature. Energy Procedia 134, 276–285 (2017)

    Article  Google Scholar 

  39. S. Yadir, R. Bendaoud, A. EL-Abidi, H. Amiry, M. Benhmida, S. Bounouar, B. Zohal, H. Bousseta, A. Zrhaiba, A. Elhassnaoui, Evolution of the physical parameters of photovoltaic generators as a function of temperature and irradiance: New method of prediction based on the manufacturer’s datasheet, Energy Conversion and Management 203 (2020) 112141.

  40. Domínguez, C., Antón, I., Sala, G.: Multijunction solar cell model for translating I-V characteristics as a function of irradiance, spectrum, and cell temperature. Progr Photovolt Res Appl 18, 272–284 (2010)

    Google Scholar 

  41. T. Sumaryada, S. Rohaeni, N.E. Damayanti, H. Syafutra, H. Hardhienata, Simulating the Performance of Al0. 3Ga0. 7As/InP/Ge Multijunction Solar Cells under Variation of Spectral Irradiance and Temperature, Modelling and Simulation in Engineering 2019 (2019).

  42. Fébba, D., Rubinger, R., Oliveira, A., Bortoni, E.: Impacts of temperature and irradiance on polycrystalline silicon solar cells parameters. Sol Energy 174, 628–639 (2018)

    Article  Google Scholar 

  43. Chegaar, M., Hamzaoui, A., Namoda, A., Petit, P., Aillerie, M., Herguth, A.: Effect of illumination intensity on solar cells parameters. Energy Procedia 36, 722–729 (2013)

    Article  Google Scholar 

  44. Chaibi Y, M. Malvoni, A. Allouhi, S. Mohamed, Data on the I–V characteristics related to the SM55 monocrystalline PV module at various solar irradiance and temperatures, Data in brief 26 (2019).

  45. Humada, A.M., Hojabri, M., Mekhilef, S., Hamada, H.M.: Solar cell parameters extraction based on single and double-diode models: a review. Renew Sustain Energy Rev 56, 494–509 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ismail R. Mohammed at the Physics Department, Koya University for the technical helps he offered during the implementation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi F. Muhammadsharif.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, D.R., Abdullah, H.M. & Muhammadsharif, F.F. Utilization of device parameters to assess the performance of a monocrystalline solar module under varied temperature and irradiance. Energy Syst 14, 229–241 (2023). https://doi.org/10.1007/s12667-021-00472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00472-6

Keywords

Navigation